Article Text

Serum α-hydroxybutyrate (α-HB) predicts elevated 1 h glucose levels and early-phase β-cell dysfunction during OGTT

Abstract

Objective Serum α-hydroxybutyrate (α-HB) is elevated in insulin resistance and diabetes. We tested the hypothesis that the α-HB level predicts abnormal 1 h glucose levels and β-cell dysfunction inferred from plasma insulin kinetics during a 75 g oral glucose tolerance test (OGTT).

Research design and methods This cross-sectional study included 217 patients at increased risk for diabetes. 75 g OGTTs were performed with multiple postload glucose and insulin measurements over a 30–120 min period. OGTT responses were analyzed by repeated measures analysis of variance (ANOVA). Multivariable logistic regression was used to predict 1 h glucose ≥155 mg/dL with α-HB added to traditional risk factors.

Results Mean±SD age was 51±15 years (44% male, 25% with impaired glucose tolerance). Fasting glucose and insulin levels, but not age or body mass index (BMI), were significantly higher in the second/third α-HB tertiles (>3.9 µg/mL) than in the first tertile. Patients in the second/third α-HB tertiles exhibited a higher glucose area under the receiver operating characteristics curve (AUC) and reduced initial slope of insulin response during OGTT. The AUC for predicting 1 h glucose ≥155 mg/dL was 0.82 for a base model that included age, gender, BMI, fasting glucose, glycated hemoglobin (HbA1c), and insulin, and increased to 0.86 with α-HB added (p=0.015), with a net reclassification index of 52% (p<0.0001).

Conclusions Fasting serum α-HB levels predicted elevated 1 h glucose during OGTT, potentially due to impaired insulin secretion kinetics. This association persisted even in patients with an otherwise normal insulin–glucose homeostasis. Measuring serum α-HB could thus provide a rapid, inexpensive screening tool for detecting early subclinical hyperglycemia, β-cell dysfunction, and increased risk for diabetes.

  • Oral Glucose Tolerance Test
  • Biomarkers
  • Insulin Resistance
  • Pancreatice Insulin Secretion

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

    Files in this Data Supplement: