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ABSTRACT
Objective: Singapore is a microcosm of Asia as a
whole, and its rapidly ageing, increasingly sedentary
population heralds the chronic health problems other
Asian countries are starting to face and will likely face
in the decades ahead. Forecasting the changing burden
of chronic diseases such as type 2 diabetes in
Singapore is vital to plan the resources needed and
motivate preventive efforts.
Methods: This paper describes an individual-level
simulation model that uses evidence synthesis from
multiple data streams—national statistics, national
health surveys, and four cohort studies, and known
risk factors—aging, obesity, ethnicity, and genetics—
to forecast the prevalence of type 2 diabetes in
Singapore. This comprises submodels for mortality,
fertility, migration, body mass index trajectories,
genetics, and workforce participation, parameterized
using Markov chain Monte Carlo methods, and permits
forecasts by ethnicity and employment status.
Results: We forecast that the obesity prevalence will
quadruple from 4.3% in 1990 to 15.9% in 2050, while
the prevalence of type 2 diabetes (diagnosed and
undiagnosed) among Singapore adults aged 18–69 will
double from 7.3% in 1990 to 15% in 2050, that ethnic
Indians and Malays will bear a disproportionate burden
compared with the Chinese majority, and that the
number of patients with diabetes in the workforce will
grow markedly.
Conclusions: If the recent rise in obesity prevalence
continues, the lifetime risk of type 2 diabetes in
Singapore will be one in two by 2050 with
concomitant implications for greater healthcare
expenditure, productivity losses, and the targeting of
health promotion programmes.

INTRODUCTION
Type 2 diabetes mellitus (T2DM) looms
large over Asia. Asians, especially South
Asians, are predisposed toward T2DM to a
greater extent than ethnic Europeans.1 2 At
even greater risk are ethnic Asians living in
Europe or the Americas, where this predis-
position is accentuated by the adoption of
modern, urban lifestyles rich in processed,

energy-dense foods and reduced physical
activity. Examples abound: rates of T2DM are
1.3–4.8 times higher among American Asians
and Pacific Islanders than in Europeans
living in the Americas,3–6 2–3 times higher
among American Japanese than in Japanese
living in Japan,7–9 and 1.9–6 times higher
among South Asians versus Europeans living
in Europe.10 11 India (51 million) and China
(43 million) already have more people with
type 2 diabetes than the USA (27 million),12

but as lifestyles and diets in rapidly develop-
ing Asia become increasingly urbanized, it
therefore must be expected that the burden
of T2DM will continue to grow in the most
populous continent.
Singapore is a microcosm of Asia. Three

broad ethnicities, corresponding to the three
major population centers in Asia, are repre-
sented in the city-state: East Asians, in the
Chinese majority, South East Asians, via the
Malay, and South Asians of mostly Indian

Key messages

▪ Asians in general, and Singaporeans in particu-
lar, are increasingly at risk of diseases such as
type 2 diabetes that are associated with modern,
high calorie, sedentary lifestyles.

▪ Forecasts of the prevalence of diseases such as
type 2 diabetes require models that quantify and
predict the changing dynamics of the drivers of
the epidemic, including population age structure
and evolving obesity levels.

▪ Using evidence synthesis, Bayesian inference,
and individual-based modeling, we have devel-
oped forecasts of type 2 diabetes prevalence and
incidence to 2050 in different segments of the
population of Singapore, with ethnic minorities
bearing a disproportionate burden, a marked rise
in the incidence of type 2 diabetes in the work-
force, and a rise in the lifetime risk to one in
two.

▪ It’s tough to make predictions, especially about
the future.––Yogi Berra
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and Sri Lankan descent. Over the past few decades,
these groups have been exposed to significant changes
in lifestyle, diet, and other environmental influences
that are typical of a high-income society, changes that
are reflected in the doubling of the prevalence of
T2DM from 5% in the 1980s13 to 11% in 2010.14

Rapidly ageing, increasingly sedentary, Singapore pre-
sages the problems other Asian countries will face in the
decades ahead.
Since T2DM is one of many competing public health

issues that will accompany the ageing of Singapore, as in
Asia, it is vital to be able to forecast the future burden of
T2DM to facilitate rational planning of public health
campaigns. To predict involves positing a model that
encapsulates epidemiological and medical subject-area
expertise on the main drivers of T2DM at the individual
and population levels. Rigorous subsequent parameter-
ization of the model ensures its relevance to the popula-
tion to which it is applied. The degree of complexity of
the model depends on the objective of the analysis and
the data available: neither too simplistic, lest it fail in
extrapolation to scenarios it was not validated for; nor
more complex than is needed to meet those objectives.
Methods used in other settings to forecast the evolving
burden of chronic diseases include microsimulation
models positing assumptions on future obesity and
physical activity trends,15 extrapolating linear regressions
of the prevalence of overweight and adjusting geo-
graphic distribution using deprivation indices,16 forecast-
ing the changing demography of a country with or
without increasing incidence,17–20 and modeling body
mass index (BMI) and its impact on development of
T2DM and related complications.21 22

One of the most challenging issues in developing a
model for a future public health phenomenon is that
the health of a population is never in a stable equilib-
rium. Although the observed rise in T2DM prevalence
from 8.6% (95% CI 7.7% to 9.6%) in 1992 to 11.3%
(95% CI 10.3% to 12.3%) in 2010 in Singapore can be
attributed to ageing, as the age-specific prevalence has
remained relatively static since the 1990s,14 it would be
misleading to forecast the future prevalence of T2DM by
applying the historic age-specific prevalence of T2DM to
a projected age distribution at some future time point—
for the age-specific prevalence of obesity, and overweight,
another important risk factor of T2DM,23 have risen sub-
stantially in most demographic segments over this time
period.24 This rise foreshadows an increase in the age-
specific prevalence of T2DM, as the increasingly obese
young of today become the increasingly diabetic old of
tomorrow. Predictions must hence incorporate ageing
and secular trends in obesity, reflecting changes in diet
and physical activity, as otherwise they may severely
understate the future burden. Furthermore, evidence of
a genetic contribution to T2DM from familial aggrega-
tion (the risk of T2DM increases twofold to fivefold for
individuals having a family history,25 26 while heritability
of T2DM—the proportion of phenotypic variance

attributed to genetic factors—has been estimated at
approximately 26% in a Danish population-based twin
study27) suggests that the effect of genetics should also
be incorporated.
This paper describes a demographic, epidemiological

model of Singapore and its use in forecasting the total
prevalence of T2DM (diagnosed and undiagnosed) to
2050. The model is an individual-based model which
represents each resident in the city-state, past (from
1990) and future (to 2050), thereby facilitating the
incorporation of obesity trends, both secular and over
an individual’s life span. The model incorporates demo-
graphic processes including the mass migration
Singapore has experienced over the past two decades,
submodels for the evolution of each individual’s yearly
BMI and genetic risk of T2DM, and a T2DM onset sub-
model, and data from national statistics, nationally repre-
sentative cross-sectional surveys, longitudinal studies,
molecular epidemiological cohort studies, and the litera-
ture, analyzed using Bayesian statistical methods.

METHODS
The model contains submodels as depicted in figure 1
and summarized below. Mathematical details are pro-
vided in the online supplementary methods.

Demographic model
The model is incremented in units of 1 year and tracks
the resident population of Singapore from 1990 to 2050.
Individuals die according to mortality rates that vary by
age, year of birth, gender, and for the three main ethni-
cities of Singapore—Chinese, Indian, Malay—and a
fourth category aggregating others (mostly of mixed eth-
nicity; other South East Asians; and Europeans28).
The mortality rate is parameterized as a smooth spline

function stratified by gender with proportional hazards
for other effects, including T2DM status.
Fertility rates differ for each age, year of birth, and eth-

nicity, with ethnicity assumed to be inherited maternally.
The fertility rate is modeled as a Gaussian function with
parameters that are functions of demographic factors.
Migration (outward and, especially, inward: the popu-

lation grew from 3 million in 1990 to 5.1 million in
2010) is represented by a baseline migrant age profile
curve, a spline curve stratified by ethnicity and gender,
with a random effect applied to each year to reflect the
economic situation and government policy changes. The
parameters of these models are estimated from national
statistics released by the Singapore Department of
Statistics, in particular the 1990, 2000, and 2010 censuses
of population, the annual yearbook of statistics, which
conveyed information on the size, age structure, gender,
and ethnic composition over time, and life tables by
gender and fertility and mortality rates. These rates and
statistics (except the censuses and life tables) had for
the most part a resolution only to 5-year age bands—
coarser for older ages—and no information on

2 BMJ Open Diabetes Research and Care 2014;2:e000012. doi:10.1136/bmjdrc-2013-000012
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migration. Crude birth rates and death rates by ethnicity
during the period 1990–2010 were obtained from the
Report on the Registration of Births and Deaths.
A three-state Markov model describes how the resident

population moves between work, unemployment, and
out of the workforce, conservatively assuming no correl-
ation between T2DM and workforce participation, and
no changes in retirement ages. In this, weekly transition
probabilities between states vary by age, calendar year,
and gender, and are estimated from the annual Report
on the Labour Force in Singapore, which provides data
on the resident population by 5-year age groups, gender,
and workforce status, and unemployed resident popula-
tion by 10-year age groups and duration of unemploy-
ment (in weeks), and the General Household Survey in
1995 and 2005, which provide data by 5-year age groups,
gender, and workforce status. We obtained estimates of
weekly age-dependent transition probabilities via Markov
chain Monte Carlo (MCMC) methods.29 30

BMI model and data
We developed an individual, hierarchical model of BMI
trajectories over an adult life span, stratified by gender
and ethnicity. In this, an individual’s BMI over time is
described by Gaussian fluctuations around a sequence
of connected lines, with joints at age 35, 55, and 75.
Each individual has a different starting BMI (at age 18)
and three BMI gradients, which are assumed to come
from a multivariate normal distribution whose hyper-
parametric mean and covariance are common to all
individuals of that gender and ethnic group. These
hyperparameters are estimated using (1) longitudinal
data from the Singapore Prospective Study programme
(SP2), which contains BMI measurements and T2DM

status at two of three time points (the 1992 or 1998
National Health Survey (NHS) and a follow-up visit
around 2005), and (2) aggregate data from the 2004
and 2010 NHSs on the proportions of four BMI categor-
ies (underweight, normal weight, overweight, and
obese) within age bands (18–29, 30–39, 40–49, 50–59,
60–69) and gender/ethnicity groups.

Genetic risk factor model and data
From a combined list of 44 single-nucleotide polymorph-
isms (SNPs) previously reported to be associated with
T2DM in an Asian population,31–33 association analysis
between the SNPs and T2DM was performed using addi-
tive logistic regression on SNPTEST software34 in three
cohort studies—the Singapore Chinese Eye Study
(SCES, with 302 people with type 2 diabetes and 1089
without), the Singapore Malay Eye Study (SiMES, with
794 patients with type 2 diabetes and 1420 non-
diabetes), and the Singapore Indian Eye Study (SINDI,
with 977 people with type 2 diabetes and 1169 without).
Fourteen SNPs were collectively selected for the p value
threshold of 0.05 in at least one cohort study represent-
ing one major ethnic group in Singapore (see online
supplementary table S1). To account for heterogeneous
genetic risks within ethnic groups, the joint distribution
of 14 SNPs associated with T2DM in each of the three
main ethnicities of Singapore was determined from the
corresponding cohort study. Assuming representative-
ness of the cohorts and no gender bias in the distribu-
tions of the associated risk alleles, the frequencies of all
16 384 allele combinations of 14 SNPs were determined
within these groups. A point estimate of the odds ratio
(OR) for each SNP from a meta-analysis35 was combined
with these frequencies to determine the distribution of

Figure 1 Overview of model

structure. Boxes represent

submodels; arrows indicate

direction of information flow

between submodels. BMI, body

mass index; T2DM, type 2

diabetes mellitus.
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ORs for T2DM for each ethnicity. As the distribution of
ORs conditional on ethnicity was approximately log
normal, we derived its mean and SD by weighing log
ORs with associated allele frequencies. To prevent
double counting the effect of ethnicity on T2DM inci-
dence and genetic risks, we standardized the ORs such
that the weighted mean OR within each ethnic group
was 1 (see online supplementary figure S1). In the simu-
lation model, for people belonging to the three main
ethnicities, individuals’ genetic risks, which were
modeled to be conditionally independent of their BMI
trajectories given ethnicity, were selected randomly from
the appropriate distribution of ORs. For people belong-
ing to other ethnic groups, the distribution of ORs of
the Chinese majority was used.

Type 2 diabetes onset model and data
Using the same longitudinal data as in the BMI model,
we generated a single putative BMI trajectory that
matches the observed data for each individual using
importance sampling. This was then used together with
age, gender, and ethnic group within a logistic model
for T2DM incidence. The cumulative probability of
developing T2DM between the two observation times
was derived by summation and used to generate the like-
lihood function, which permitted estimation using
MCMC. In the simulation model, the probability of pro-
gressing from a non-diabetic state to T2DM was calcu-
lated annually conditional on the individual’s
demographics and BMI and genetic risk, with the effects
assumed to operate multiplicatively in the ORs.
All participants provided written informed consent.

Sensitivity analysis
We also developed a model in which BMI and genetics
were excluded as risk factors and the risk of getting
T2DM was a function of age, ethnicity, and gender only.
This model is described in the online supplementary
methods.

Software
All statistical analyses were performed in R V.3.0.036 or
JAGS V.3.1.037 38 using customized scripts that took
around 24 h to run on a desktop for each model and
demographic group. All graphics were created using the
grid package.39 Simulations were run in C++ with indivi-
duals represented as objects, linked to their mothers,
with attached static and dynamic variables. The simula-
tion was initialized using the demographic structure
described in the 1990 census, with individuals added to
the population when their mothers gave birth or when
they immigrated to Singapore. Multiple runs using dif-
ferent random number seeds and parameters, drawn
from the posterior distribution to account for paramet-
ric uncertainty, were used to build up a Monte Carlo
sample, with each simulated population queried to
output characteristics, such as the number of people
with type 2 diabetes within any age range at any time.

The C++ code was compiled using the GCC compiler,
and runs, covering the time horizon 1990–2050 and
around 6.25 million individuals, took an average of
3 min for one whole run.

RESULTS
Incidence of type 2 diabetes
Incidence rates were estimated and projected from the
fitted model by extracting new, potentially undiagnosed
cases of T2DM among various demographic segments.
Crude incidence rates, past and future, are tabulated in
table 1 by gender and ethnicity. Incidence rates are
expected to double over the period 1990–2050 for all
the demographic groupings considered. Among the
Chinese, the incidence is expected to rise from 5 (95%
prediction interval 4–5) per 1000 woman-years to 9
(7–10), or 6 (5–6) per 1000 man-years to 12 (10–13),
over these six decades. For Malays, the rise is steeper (7
(6–8) to 14 (13–16) among women or to 17 (15–18) in
men), and for Indians, steeper still, with an annual inci-
dence of 17 (16–19) to 19 (17–21) per 1000-person
years by 2050, from 8 (7–10) to 10 (9–12) in the 1990s.

Prevalence of type 2 diabetes
The total prevalence of T2DM (diagnosed and undiag-
nosed) among Singapore adults (age 18–69) is projected
to rise from 7.3% (6.8–8%) in 1990 to 15% (13.8–16.2%)
in 2050 (figure 3B). Modeled past and projected future
age-specific prevalence rates are depicted in figure 2.
The prevalence was generally markedly higher in Indians
and Malays than Chinese Singaporeans, with Malays and
Indians having a risk profile roughly the same as a
Chinese 10 years their senior. Although prevalence
among female Chinese sexagenarians is projected to stay
relatively constant, rates are expected to grow substan-
tially in other groups: by 2050, we expect 35% (31–39%)
of Chinese men aged 60–69 having T2DM, and around
half of the Malays and Indians of that age group
(figure 2). A moderate risk in prevalence among young
adults is forecast (see online supplementary table S2).

Age and overweight
The projected rise in the total prevalence of T2DM in
Singapore is driven by two factors: the modeled ageing
and fattening of the population. The age pyramid
(figure 3D–G) is predicted to become increasingly top
heavy, with the proportion of the population under age
20 falling from 25.2% (2010) to 15.9% (2050), and the
proportion over the age of 60 soaring from 13.3% to
31.9% over the same time frame. The effect of this rise
in the prevalence of the main risk factor (advanced
years) is compounded by a dramatic rise in obesity and
overweight levels. The fraction of the population that is
obese is predicted to quadruple from 4.3% in 1990 to
15.9% by 2050, while those overweight are projected to
expand in number from 24.6% in 1990 to 38.6% by
2050 (figure 3A). This projected increase in BMI at the
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population level can be attributed to all subgroups (see
online supplementary figure S3–S7). The forecast rise in
obesity levels is most stark for Malays and Indians
(hitting 40% among Malay women aged over 40), but
the large Chinese majority is also expected to see a rise
in obesity levels of around 10 percentage points (see
online supplementary table S3).
The confluence of these factors will, if the projections

hold true, lead to a rise in the number of those in the
workforce living with T2DM, a proxy for the impact of
T2DM on productivity and corporate health insurance
plans, from 97 600 (89 800–106 100) in 1990 to 321 600
(293 000–353 700) by 2050 (figure 3C). The type 2 dia-
betic population is predicted to increase from 358 500
(333 900–386 100) in 2010 to 673 200 (624 700–727 400)
in 2030 and to 909 300 (839 700–986 900) in 2050.

Model validation
Demographic structure
The model is seeded with the 1990 census. It reproduces
the 2010 census very accurately (figure 3E), save for a
slight underprediction of the number of women aged
25–40, which we attribute to migration.

BMI trajectories
The distribution of each pair of BMI observations for
the SP2 participants agrees well with the posterior pre-
dictive distribution of trajectories within each ethnic
group and gender demographic segment (see online
supplementary figure S2).

Prevalence of type 2 diabetes
The modeled overall proportion of patients with type 2
diabetes closely corresponds to results of the NHSs,
except for the outlying 2004 survey (figure 3B). It is not
known why the 2004 NHS is so discrepant from the
other NHSs. Prevalence of T2DM within age, gender,
and ethnic groups is similar between the model and
data (figure 2), though the small sample sizes on stratifi-
cation lead to unstable empirical estimates with broad
uncertainty intervals, so the concordance is not perfect.

Sensitivity analysis
We also developed a simpler model for T2DM that does
not take into account BMI changes and genetic effects,
with population ageing being the main factor contribut-
ing to the increase in prevalence of T2DM in this
model. Consequently, projected T2DM prevalence
among Singaporean adults aged 18–69 by 2050 for the
simpler model is 11.8% (11.2–12.6%), lower than in the
full model (15%) even though the overall historic preva-
lence of the two models is quite close to each other
(7.1% for the reduced model and 7.3% for the full
model in 1990; see online supplementary figure S9).
The reduced model for T2DM assumes that the effect of
age on T2DM risk is constant over time. As a result, the
lifetime risk for Singaporean adults aged 18–69 for this
model does not change much over time, from 38.9%
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(36.3–41.9%) in 1990 to 39.2% (36.9–42.5%) in 2050. In
the full model, lifetime risk for T2DM for Singaporean
adults aged 18–69 is projected to rise from 34.5% (31.9–
38.2%) in 1990 to 43.8% (40.8–47.5%) in 2050 as the
increasing BMI trend is accounted for. An interesting
observation is the gender difference in projected life-
time risk of T2DM in the two models (see online supple-
mentary table S4). For the reduced model, women
would have a marginally higher lifetime risk than men
(39.9% vs 38.4% in 2050). In the full model, however,
women are forecast to have a lower lifetime risk than
men (lifetime risks of T2DM by 2050 are 37% in women
and 51% in men). This is due to Chinese women, the
largest group of women in Singapore, not experiencing
the same rise in overweight as did men and other

women, so that simple forecasts based on current age
prevalence would substantially underestimate future
prevalence of T2DM in all groups other than Chinese
women.

DISCUSSION
Modeling provides a way to explore what-if scenarios
quickly and cost effectively. In this paper, we use model-
ing to answer the question: If the recent rise in obesity
levels in Singapore were maintained, what would the
effect on the prevalence of T2DM be one generation
from now? The answer is worrying: a rise in the overall
prevalence from 1 in 13 to around 1 in 6 working age
adults, a lifetime risk of around 1 in 2, and an increasing

Figure 2 Age-specific, gender-specific, and ethnicity-specific prevalence estimates and forecasts of (diagnosed and

undiagnosed) type 2 diabetes. Model forecasts are presented as bars with 95% prediction intervals. Data are indicated by dots

with 95% empirical CIs.
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burden of T2DM in the workplace. T2DM has been esti-
mated to reduce a worker’s productivity by around a
third in the USA,40 due to disability, premature mortal-
ity, early retirement, and absenteeism, in that order,41

while in Canada, those with T2DM were found to be
between 150% and thrice as likely not to be in the labor
force, and to have an income approximately 25% lower
than non-diabetics.42 Employers in Singapore will have
to decide whether they should take responsibility for
preventive action, such as screening or weight loss pro-
grammes, to mitigate future losses.
Singapore is an ideal test bed for public health

research in Asia. Not only does its Chinese, Indian, and
Malay population make it a miniature of Asia as a whole,
but other countries in Asia are likely to look increasingly
like Singapore, as they become increasingly developed,
urbanized, sedentary, and aged. The current prevalence
of T2DM in populations comparable genetically and cul-
turally, but at an earlier stage of development, is markedly
lower (in mainland Chinese sexagenarians 19%43 vs 25%
in Singapore Chinese, in elderly Malays in Malaysia
21%44 vs 37%), boding ill for the future elsewhere in
Asia.
All modeling studies make some degree of simplifying

assumptions. In this study, the risk of developing T2DM
is determined by demographic factors, a secular trend,
genetics, and current BMI, as a proxy for overweight
and general ill health. The model averages over other
factors that have a role include epigenetics,45 physical

activity,46 diet,47 family history,48 socioeconomic status,
and pregnancy.49 The formulation as an individual-level
model allows observed variability between individuals to
be characterized, along with risk factors that vary dynam-
ically over lifetimes. The genetic risk model includes 14
SNPs that are significantly associated with T2DM in the
Singapore population and assumes that these have an
effect independent of BMI, as none of the 14 SNPs has
been reported to be associated with overweight/obesity
in the Singapore setting.50 Future work should verify this
assumption and might incorporate the effect of genetic
factors on BMI, for which twin studies indicate that esti-
mated BMI heritability is 47–90%.51 The primary data
source on weight that was available to us was aggregate
statistics from the NHS, which on stratification led to
small demographic segments with substantial sampling
variability. The model we used pools information
between age groupings and from cohort studies, which
we believe yields more reliable estimates. Even more reli-
able estimates of change might result from mining
medical records, which would permit relaxation of the
distributional assumptions used herein.52 The data used
to parameterize the models of BMI and T2DM were
from cohort studies based on nationally representative
samples of adults, overcoming the common difficulty in
generalizing from cohort studies to the general popula-
tion, though this means that BMI trajectories in child-
hood and adolescence were not modeled. With data on
childhood obesity, the prevalence of which has risen

Figure 3 Obesity and type 2 diabetes forecasts. Top: forecast prevalence of obesity and overweight in adults (A), forecast

prevalence of type 2 diabetes among working age adults (B) and number of patients with type 2 diabetes in the workforce (C).

Means and 95% prediction intervals are plotted. For prevalence, point estimates from the National Health Surveys are overlaid.

Bottom (D–G): modeled age pyramids with patients with type 2 diabetes and diabetic workers overlaid. Red and blue bars

indicate women and men, respectively; black bars indicate patients with type 2 diabetes (not in the workforce) of both genders;

and green bars indicate working diabetics. The + symbol indicates data from the censuses of 2000 and 2010.
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globally in recent decades,53 we would have been able to
capture any recent changes in this critical age period.
Future work should address this data paucity. The model
assumes no interaction between overweight/T2DM and
workforce participation except interactions mediated by
demographics, and research is needed in the Singapore
setting to elucidate whether any additional interactions
are present. The T2DM model does not incorporate pre-
diabetes, an intermediate state of T2DM when blood
glucose level shows abnormalities—impaired fasting
glucose or impaired glucose tolerance—but does not
exceed the threshold determining T2DM. Introducing a
prediabetic state into the T2DM model would stratify
the non-diabetic population into low-risk and high-risk
groups, enhancing the capability of the model for pos-
sible intervention evaluation. This would, however,
require additional information on reversion rates from a
prediabetic state to a normal state or on progression
rates from a prediabetic state to T2DM in the Singapore
context.
The long-term goal of this modeling project is to

bring together three models: the present one, which
projects the prevalence of T2DM in different subpopula-
tions, a model of outcomes—from more complications
from macrovascular diseases (eg, cardiovascular disease)
and microvascular diseases (eg, kidney, nerve, and eye
diseases), to healthcare expenditure and workplace
absenteeism—and a model of interventions, such as
healthy eating or active lifestyle programmes. Taken
together, these would allow the effectiveness, and cost
effectiveness, of different health promotion interven-
tions to be assessed in silico to enhance the evidence
base of public health decision making by determining
how much of a reduction to levels of overweight and
obesity would be needed to substantially reduce the
burden of T2DM, and how much can realistically be
achieved by health promotion campaigns.
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SUPPLEMENTARY MATERIAL

This document provides additional detail on the model components used to forecast
diabetes incidence and prevalence in Singapore, along with further results.

Supplementary Methods

This section describes the mathematical formulation of the subcomponents of the model
in detail, along with the approach used for parameter estimation.

General notation

The model formulation described in the following sections makes use of the following
common notation.

Indices Subscripts or superscripts
i individual index
x age index
g gender index (g = 0 for females and g = 1 for males)
r race index (Chinese r = 0; Malay r = 1; Indian r = 2; Other r = 3)
t time index (t = 0 for starting year 1990)

Demographic model

The demographic model has three subcomponents, describing mortality, fertility and
migration.

Mortality

Using the Lee–Carter model [1] as a state-space model [2], we have the following form
for the log-mortality of the gth gender, at age a and time t:

mg
x,t = αgx + βgxκ

g
t

where αgx is the (natural) log of the mortality rate for that group in 1990, βgx accounts
for mortality changes over time, and varies by 5-year age groups, and κgt is assumed to
be a random walk with drift dgm:

κgt = κgt−1 + dgm + εgm,t,

with εgm,t a random error, assumed to be normally distributed with mean 0 and variance
σ2
εg,m .

Race-specific mortality rates are assumed to be proportional to the baseline mortality
rate, with proportional hazard ratios allowed to be different for three broad age ranges:
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young (age 0–19), adult (age 20–59) and old age (age 60 and above). The log mortality
rate for race r is then

mg,r
x,t = mg

x,t + γg,rAx

where Ax indicates which of the three age ranges x falls in.

Fertility

We use a Gaussian function to model the shape of the age-specific fertility rates, fx,t:

fx,t = θ2 exp(δt)
1√

2πσ2
f

exp

(
−[x− µf + θ1(t− 1)]2

2σ2
f

)
.

We assume that the age of peak fertility, µf , increases linearly with time (i.e. a birth
cohort effect) with a constant rate θ1, while a further secular trend δt of the overall
fertility rate that follows a random walk with drift. Race-specific fertility rates are
modelled as proportional to age-specific fertility rates of the total population, i.e.

f rx,t = fx,t exp(τr).

Migration

To model the net-migration number for each year, we re-parameterise the simplified
migration schedule model of Castro and Rogers [3] without the retirement peak:

Mx,t = (a1b1 exp(−a1x) + b2 exp (−a2(x− µ2)− exp (−λ2(x− µ2))) + b0) ρt.

Pre-labour force migration (i.e. children) is represented by a single negative exponential
curve with descent parameter a1, while the labour force age migration is represented
by a left-skewed unimodal curve with λ2 as ascent parameter, a2 as descent parameter
and µ2 controlling the age of peak migration. For identifiability, b2 is fixed to 1, and
ρt is time-varying scale parameter reflecting economic fluctuations. All the parameters
are allowed to vary by gender and race. For forecasts, we fix ρt to match government
“guidelines” for projected future population growth, as reported in the national press.
It is worth noting that these reports imply a reduced influx of immigrants relative to
past patterns.

Employment model

We propose a discrete-time Markov chain model for employment status of Singapore
residents with three states: working (W), unemployed (U) and economically inactive
(I). In the model, weekly transition probabilities depend on age and gender. The
transition probability matrix of the model is:

W g
x,t U g

x,t Igx,t

W g
x,t−1

U g
x,t−1

Igx,t−1

 1− ugx · exp(ωt) ugx · exp(ωt) 0

wgx 1− wgx − vgx vgx
sgx 0 1− sgx
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with time parameter ωt ∼ N(0, σ2
ω).

We use a cubic spline function to model the age-specific transition probabilities with
5 knots at age 15, 30, 45, 60 and 70, for both genders separately. To obtain the
distribution of durations unemployed in weeks, we extend the transition matrix from
3 states

(
W g
x,t, U

g
x,t, I

g
x,t

)
to 42 states

(
W g
x,t, U

g,1
x,t , · · · , U

g,40
x,t , I

g
x,t

)
where U g,k

x,t denotes the

number of people age x, gender g, being unemployed for k weeks at time t, except U g,40
x,t

denotes people being unemployed for 40 weeks or more.

Body mass index model

Model

The BMI trajectory of individual i (of gender g and race r) is modelled to follow an
overall trend µi with an annual variability around the trend assumed to be independent
and identically distributed Gaussian:

Bi,x|µi,x, σ2 ∼ N(µi,x, σ
2).

We developed a piecewise linear model for individuals’ overall BMI trend µi,x with 4
chosen breakpoints at ages 18, 35, 55 and 75, for which that individual’s mean BMI is
specified parametrically. A natural cubic spline basis function S is used to interpolate
intermediate means between those 4 breakpoints:

µi,x = S (µi,18, µi,35, µi,55, µi,75;x) .

The BMI values at the breakpoints are set to be:

µi,18 = ϕi,0 + βg,r · (yi − 1950),

µi,35 = µi,18 + ϕi,1 · (35− 18),

µi,55 = µi,35 + ϕi,2 · (55− 35), and

µi,75 = µi,55 + ϕi,3 · (75− 55),

i.e. there is a secular trend based on year of birth, yi, on the BMI at age 18 within
any demographic segment of the population. Individualised BMI parameters govern-
ing BMI at different stages of adulthood (ϕi,0 to ϕi,3) are taken to have multivariate
Gaussian distribution over each demographic segment of the population as a whole,
with hyper-parameters estimated independently for each race and gender combination:


ϕi,0
ϕi,1
ϕi,2
ϕi,3

 ∼ MVN




φ0

φ1

φ2

φ3

 ,Σg,r

 .
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Hyperpriors

We use the following hyperpriors:
φ0

φ1

φ2

φ3

 ∼ MVN




20
0
0
0

 ,Ω−1

 ,

Σ−1 ∼ Wish (Ω, 5) ,

βg,r ∼ U(−100, 100).

Average BMI at age 18 for people born in 1950 was presumed to lie in the range 10–30,
which we represented by mean 20 and variance 52, hence the specific values in the
hyperprior for φ0. As we expect variability in BMI from year to year to be small and
of the order of ±1 we assume standard Gaussian distribution for variability around
individuals’ BMI trends and set σ = 0.5. Prior correlations among φ0, φ1, φ2 and φ3

are set to be 0. Hence, we have Ω = Diag(5−2, 1, 1, 1). Face validity of these priors was
established by presenting simulated trajectories to nutritional epidemiologists.

Parameter estimation

This hierarchical model is parameterised using longitudinal data from the Singapore
Prospective Study Programme (SP2) [4] which contain two BMI measurements for each
individual in the study. The first time point corresponds to the 1992 National Health
Survey (NHS) or 1998 NHS and the second to a follow-up visit around 2005. The
likelihood from these data is augmented by a contribution from aggregate data from
the 2004 and 2010 NHSs on the numbers in four BMI categories (underweight, normal
weight, overweight and obese) within age bands and gender/race groups, assuming no
differences in proportions of age groups and sex ratios among the 3 ethnic groups in
the survey sample. Using the total sample size and the marginal proportions in age
groups, ethnic groups and genders, we estimate the number of people in each gender,
ethnic group, age group and BMI category combination in the survey sample. For these
data, we generate N g,r

a,b individuals with known gender g and race r, with age assumed
uniformly distributed in age group a, simulated BMI values from the model above and
evaluated via Monte Carlo the fraction within each BMI category b, a process similar
to Approximate Bayesian Computation [5].

The full Bayesian hierarchical model for BMI was implemented using JAGS 3.1.0.[6-7]
Data preparation and analysis was done in R and JAGS was called from R [8] using the
package rjags [9]. For each demographic segment, we ran three parallel chains from
randomly selected starting points, with a burn-in of 20 000, thinning at 10, and 100 000
iterations post-burnin. Convergence was assessed by visually assessing the trace and
the posterior density plot of all parameters (Supplementary Figure S10–S15). The
computing time, under a desktop Intel Core 4 CPU 2.83 GHz 7.6GB RAM, was about
10–12 hours for minority groups (Indian male/female and Malay male/female) and
nearly 1 day for Chinese males and females for whom the sample size was larger.
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Diabetes incidence model

Diabetes Mellitus data

The SP2 longitudinal data also provided information on diabetic status at the same
two time points as BMI was measured. Although the classification of diabetes mellitus
status in National Health Survey 1992 and 1998 was based on the result of 2 tests
(fasting-glucose test and oral glucose tolerance test), the diagnosis of diabetes in the
follow-up study in 2005 was based only on the result of the fasting glucose test, which
has lower sensitivity. We therefore adjusted the estimates of the diabetes prevalence
to account for the underestimated prevalence at the second time point, as described
below.

Denote the true diabetes mellitus status of individual i at time point 1 (1992 or 1998)
and time point 2 (around 2005) by Y i

1 and Y i
2 , respectively, where Y i

k = 1 means that
the individual i has diabetes at time point k and 0 otherwise. At time point 1, Y i

1

may only take the value of 0 or 1, and its value is assumed known as the oral glucose
tolerance test is taken to be a gold standard. At time point 2, if an individual tested
positive on the fasting glucose test, Y i

2 is known to be 1, but if negative on the fasting
glucose test, his or her true diabetic status is assumed to be unknown, i.e. Y i

2 could be
either 0 or 1. (Note that this applies only to individuals without diabetes at the first
time point. Those with diabetes are assumed not to be cured and are excluded from
this part of the model fitting.)

We assume that Y i
1 ∼ Bern (πi1) and (Y i

2 |Y i
1 = 0) ∼ Bern (πi2). Let us denote F i

k as the
value of fasting glucose test at time point k and T ik as the classification result based on
fasting glucose test. Using the standard threshold for fasting glucose, we have:

T ik =

{
0 if Fk ≤ 7,
1 otherwise.

T i1 ∼ Bern
(
p · Y i

1

)
T i2 ∼ Bern

(
p · Y i

2

)
,

i.e. where p is the sensitivity of fasting glucose at this threshold relative to the gold
standard. The distribution for Y i

2 can therefore be estimated as the information from
Y i
1 provides information on p.

We use logistic regression to fit the model:

logit(πi1) = α1 + β1B
i
1 + β2x

i
1 + β31[gi = 1] + β41[ri = 1] + β51[ri = 2] + β6F

i
1

logit(πi2|Y i
1 = 0) = α2 + β1B

i
2 + β2x

i
2 + β31[gi = 1] + β41[ri = 1] + β51[ri = 2] + β6F

i
2

where Bi is the BMI value at time point i, xi is age at that time point, 1[A] the
indicator function equal to 1 if A is true and 0 otherwise.

The following non-informative priors were taken for this submodel:

α1 ∼ U(−100, 100),

α2 ∼ U(−100, 100),

βk ∼ U(−5, 5), for k = 1, . . . , 6,

p ∼ U(0, 1).
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The model was implemented in JAGS 3.1.0.[6-7] Data preparation and analysis was
done in R and JAGS was called from R [8] using the package rjags [9]. 3 parallel chains
were set to run at different initial conditions. After burn-in and thinning, 3 chains of
10 000 samples from each chain were kept. Convergence was assessed visually by the
trace plot and the posterior density plot of all parameters (Supplementary Figure
S16). The computing time on a normal desktop was about 12 hours.

BMI trajectory and importance sampling

To fit the logistic regression model for diabetes risk as a function of BMI and demo-
graphics requires knowing the BMI in each year between the 2 time points of the SP2
study, rather than the 2 observed BMI values for which we actually have data. We
thus imputed a BMI trajectory for each individual using the fitted model for BMI using
importance sampling.

First we generate a sample of BMI trajectories of size 2000 for each individual in the
SP2 study, using their year of birth, race and gender, and the estimated BMI model
using the following steps:

• The mean of BMI at age 18 was calculated based on year of birth of individual i;

• 4 parameters for underlying piecewise linear model were generated using the
estimated multivariate Gaussian distribution from the BMI model

• BMIs at 4 ages (18, 35, 55 and 75) were calculated from the piecewise linear
model and the overall BMI trend of individual i was obtained by a cubic spline
function interpolating those 4 points;

• a BMI trajectory was generated by simulating Bg,r
i,x |µ

g,r
i,x , σ

2 ∼ N(µg,ri,x , σ
2).

Step 2–4 were repeated to reach the desired sample size. Then, for each individual, one
of these 2000 samples is then selected with probability proportional to the likelihood of
getting the 2 observed BMI values from the sampled trajectories. This was then used
in subsequent analysis.

Incidence model

We denote the annual risk of developing diabetes for each non-diabetic individual i at
age x by pDi,x. The model accounts the individual i’s age x, gender g and ethnic group
r and BMI B at age x, and takes a logit link for this probability:

logit
(
pDi,x
)

= θ + αx+ βBi(x) + γg + δ11[r = 1] + δ21[r = 2]

where δ1 is the Malay race effect (relative to Chinese), δ2 the Indian race effect (ditto)
and 1[A] the indicator function equal to 1 if A is true and 0 otherwise.

We denote the observed diabetic status in 2 time points for individual i as D1,i and
D2,i and age at the 2 time points as x1,i and x2,i. For each individual, an accumulated
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risk is calculated from age 18 until the first survey so that the likelihood contribution
is derived from

D1,i ∼ Bern

(
1−

x1,i∏
x=10

[
1− pDi,x

])
.

An analogous likelihood contribution for those non-diabetic at the time of the first
survey, for the accumulated risk from the first survey until follow-up is given by

(D2|D1 = 0) ∼ Bern

(
1−

x2,i∏
x=x1

[
1− pDi,x

])
.

Parameter estimation

The parameters of the diabetes model were estimated using the Metropolis-Hasting
algorithm [10-11]. with multivariate normal proposal densities, a burn-in of length
10 000, and 3 independent chains of 50 000 iterations each, with every 5th iteration
retained for analysis. Convergence was assessed by visually assessing the trace and the
posterior density plot of all parameters (Supplementary Figure S17). It took about
1.5 hours to simulate BMI trajectories for these individuals and 6.5 hours to run the
MCMC on a desktop Intel Core 4 CPU 2.83 GHz 7.6GB RAM.

Mortality rates for diabetics are taken to be proportional to that of the general pop-
ulation, multiplied by the estimated hazard ratios for all-cause mortality according to
diabetes status and by ethnic groups for participants from the National Health Survey
1992 [12].

Sensitivity analysis

We developed an alternative diabetes model using only age, race and gender as risk
factors. After stratifying by race and gender, the age (ti) at disease onset is assumed
to follow a Weibull distribution, ti ∼W(α, β). For each race and gender combination,
we have:

pg,r[x1,x2]
=

∑x2
k=x1

P (tg,ri ≤ k)

x2 − x1 + 1

where pg,r[x1,x2]
and N g,r

[x1,x2]
are modeled diabetes prevalence and total number of people

in age group [x1, x2], respectively. The likelihood of diabetes prevalence is:

p̂g,r[x1,x2]
∼ N

(
pg,r[x1,x2]

,
p[x1,x2] · (1− p

g,r
[x1,x2]

)

N g,r
[x1,x2]

)

where p̂g,r[x1,x2]
is estimated diabetes prevalence of people of race r and gender g in age

group [x1, x2] obtained from 3 recent National Health Survey (1998, 2004 and 2010).
We replaced N g,r

[x1,x2]
with N̂ g,r

[x1,x2]
as estimated sample size based on the total sample

sizes and marginal proportions of gender, race and age group in survey samples.
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The prior distributions for αg,r and βg,r are taken to be improper uniform distributions
on the positive part of the real line. Using the Metropolis Hasting algorithm,10−11

these parameters are updated by drawing a sample from a bivariate normal distri-
bution centred on the current value with covariance matrix selected on pilot runs.
(Supplementary Figure S18)
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Supplementary Tables

Genetic risk model

Supplementary Table S1: Summary Genome-wide associated study
(GWAS) results of the selected 14 SNPs. RAF: Risk allel frequency; OR: odds
ratio; p: p-values are calculated from logistics regression using SNPTEST software
with bold denoting significant association (p < 0.05).

SNP
Associated

gene
Risk
allele

SCES (Chinese) SiMES (Malay) SINDI (Indian)
RAF OR p RAF OR p RAF OR p

rs11642841 FTO A 0.046 0.761 0.026 0.198 0.868 0.051 0.317 0.964 0.542

rs12779790
CDC123;
CAMK1D

G 0.174 1.128 0.261 0.148 1.175 0.036 0.177 1.101 0.123

rs13266634 SLC30A8 C 0.532 0.627 6.35E-07 0.563 0.896 0.120 0.759 0.902 0.282

rs1353362
TSPAN8-
LGR5

C 0.251 0.797 0.027 0.246 0.979 0.972 0.374 0.995 0.948

rs1387153 MTNR1B T 0.463 1.257 0.013 0.425 0.974 0.794 0.369 0.999 0.881
rs1470579 IGF2BP2 C 0.236 1.247 0.031 0.331 0.988 0.859 0.456 1.125 0.226
rs231362 KCNQ1 G 0.888 1.487 0.011 0.841 1.032 0.531 0.737 1.029 0.676
rs2334499 HCCA2 T 0.813 0.969 0.783 0.546 1.096 0.144 0.312 0.857 0.038
rs243021 BCL11A A 0.662 1.022 0.822 0.540 1.040 0.576 0.470 0.898 0.048
rs5015480 HHEX C 0.186 0.941 0.603 0.256 0.863 0.063 0.369 0.858 0.006
rs5215 KCNJ11 C 0.351 0.856 0.095 0.387 0.861 0.023 0.350 0.983 0.686
rs7754840 CDKAL1 C 0.378 0.836 0.058 0.364 0.950 0.395 0.233 0.870 0.036
rs7903146 TCF7L2 T 0.021 1.344 0.297 0.038 1.329 0.2621 0.264 1.242 0.002
rs8042680 PRC1 A 0.997 0.601 0.633 0.965 0.612 0.003 0.762 0.952 0.960
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Prevalence of type 2 diabetes

Supplementary Table S2: Forecast age, race and gender specific prevalence
of type 2 diabetes (total: diagnosed and undiagnosed), per 100 population,
to 2050. Numbers in parentheses are 95% prediction intervals.

Age
Total Chinese Indian Malay

Female Male Female Male Female Male Female Male
2010

18–29 1 (1–1) 2 (1–2) 1 (1–1) 1 (1–2) 2 (1–3) 2 (2–3) 2 (1–2) 2 (2–3)
30–39 3 (3–4) 5(5–6) 3 (2–3) 5 (4–6) 6 (5–8) 7 (6–8) 7 (5–8) 8 (7–11)
40–49 8 (8–9) 12 (11–13) 7 (6–8) 11 (10–12) 16 (13–19) 16 (14–19) 15 (13–18) 17 (14–20)
50–59 16 (14–18) 20 (18–22) 13 (12–15) 19 (16–21) 28 (24–32) 29 (25–35) 26 (23–31) 26 (22–30)
60–69 25 (22–28) 29 (26–32) 22 (19–25) 28 (25–31) 39 (34–45) 42 (37–48) 38 (33–44) 36 (31–41)

2030
18–29 1 (1–2) 2 (2–2) 1 (1–1) 2 (1–2) 2 (2–3) 3 (2–4) 2 (2–3) 3 (2–4)
30–39 5 (4–5) 7 (6–8) 4 (3–4) 6 (5–7) 8 (7–10) 10 (8–13) 8 (6–10) 10 (8–13)
40–49 9 (8–10) 14 (12–16) 6 (5–7) 12 (10–14) 20 (17–24) 21 (18–26) 16 (14–20) 20 (16–24)
50–59 16 (14–18) 24 (21–26) 12 (11–14) 21 (19–23) 33 (28–38) 34 (29–39) 30 (25–34) 32 (27–37)
60–69 26 (24–29) 35 (31–38) 21 (19–25) 32 (28–35) 47 (42–53) 46 (41–53) 44 (39–50) 44 (38–51)

2050
18–29 2 (1–2) 2 (2–3) 1 (1–2) 2 (2–2) 3 (2–3) 3 (2–4) 3 (2–4) 4 (3–5)
30–39 5 (5–6) 8 (7–9) 4 (3–5) 7 (5–8) 9 (8–11) 12 (10–15) 10 (8–12) 13 (10–16)
40–49 11 (10–12) 16 (14–18) 9 (8–10) 14 (12–16) 21 (17–25) 24 (21–29) 19 (16–23) 25 (20–29)
50–59 19 (17–21) 27 (24–30) 16 (14–18) 24 (21–27) 34 (29–39) 38 (34–44) 32 (27–36) 39 (33–44)
60–69 26 (24–29) 39 (35–43) 20 (17–23) 35 (31–39) 54 (48–60) 54 (48–61) 47 (41–53) 52 (46–58)
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Age and Overweight

Supplementary Table S3: Estimated and forecast age, race and gender spe-
cific prevalence of obesity, per 100 population, to 2050. Numbers in parentheses
are 95% prediction intervals.

Age
Total Chinese Indian Malay

Female Male Female Male Female Male Female Male
1990

18–29 2 (2–3) 2 (2–3) 0 (0–0) 2 (1–2) 7 (5–9) 3 (2–5) 8 (6–11) 7 (5–9)
30–39 5 (4–5) 5 (4–5) 2 (2–2) 4 (3–4) 15 (12–17) 8 (7–11) 18 (15–21) 9 (8–11)
40–49 7 (6–7) 5 (5–6) 3 (3–4) 4 (4–4) 19 (17–22) 11 (10–14) 27 (24–29) 10 (9–12)
50–59 9 (8–9) 4 (4–5) 5 (4–5) 3 (2–3) 19 (17–21) 10 (8–12) 30 (28–33) 10 (9–11)
60–69 9 (9–10) 4 (4–5) 6 (5–7) 2 (2–2) 18 (15–21) 9 (7–11) 30 (27–33) 11 (9–13)

2010
18–29 3 (3–4) 5 (4–6) 1 (1–1) 3 (3–4) 11 (8–14) 5 (3–8) 12 (9–14) 13 (10–16)
30–39 6 (5–6) 9 (8–9) 1 (1–2) 7 (6–7) 22 (19–25) 13 (11–16) 23 (20–26) 17 (15–20)
40–49 8 (8–9) 10 (9–10) 2 (2–3) 7 (6–8) 27 (25–30) 16 (14–19) 33 (30–35) 19 (17–21)
50–59 9 (9–10) 7 (7–8) 4 (3–4) 5 (5–6) 28 (25–30) 15 (13–17) 36 (34–38) 18 (17–20)
60–69 9 (8–9) 5 (5–6) 5 (4–5) 4 (3–4) 26 (22–29) 13 (10–16) 35 (32–38) 18 (15–20)

2030
18–29 8 (7–9) 9 (8–10) 5 (4–6) 7 (5–8) 10 (8–13) 8 (5–12) 22 (18–26) 22 (18–27)
30–39 11 (10–12) 14 (13–15) 7 (7–8) 11 (10–12) 23 (20–26) 18 (15–22) 28 (25–32) 28 (25–32)
40–49 10 (9–10) 15 (14–16) 2 (2–2) 11 (10–13) 37 (34–41) 23 (20–26) 38 (35–41) 31 (29–34)
50–59 10 (10–11) 12 (12–13) 3 (2–3) 9 (8–10) 38 (35–41) 21 (18–24) 42 (40–45) 31 (28–33)
60–69 10 (10–11) 10 (9–11) 4 (3–4) 6 (6–7) 36 (32–40) 18 (15–22) 40 (36–45) 29 (25–32)

2050
18–29 12 (11–13) 15 (13–16) 8 (7–10) 11 (10–13) 14 (11–18) 13 (9–17) 34 (29–40) 34 (29–40)
30–39 16 (15–17) 21 (20–23) 11( 10–12) 18 (16–19) 28 (24–32) 26 (22-30) 42 (39–46) 42 (39–46)
40–49 17 (16–18) 23 (22–24) 11 (10–12) 19 (17–20) 36 (33–40) 31 (27–35) 46 (44–49) 46 (44–49)
50–59 16 (15–17) 20 (19–21) 10 (9–10) 15 (14–16) 36 (33–39) 28 (25–32) 46 (43–48) 46 (43–48)
60–69 12 (11–13) 16 (14–17) 3 (2–3) 11 (9–12) 47 (42–52) 25 (22–30) 47 (43–51) 43 (39–47)

11



Sensitivity analysis

Supplementary Table S4: Estimated lifetime risk (percent) of developing
type 2 diabetes for adults aged 18 and above over time, Singapore.

year
Model without BMI and genetic risk Full model

Male (%) Female (%) Both (%) Male (%) Female (%) Both (%)
1990 38.9 (34.8-43.8) 38.1 (35.7-44.6) 38.9 (36.3-41.9) 37 (33.4-41.2) 32.2 (28.6-36.3) 34.5 (31.9-38.2)
2000 37.8 (34.2-43.2) 39.5 (35.7-44.5) 38.9 (35.9-41.7) 38.5 (35.1-42.7) 32.4 (29-36.3) 35.4 (32.9-38.8)
2010 38.2 (34.2-44.3) 39.8 (35.8-45.3) 39 (36.2-42.6) 41.2 (37.5-45.6) 32.6 (29.4-35.9) 36.9 (34.1-40.3)
2020 38.9 (35-44.7) 39.9 (36.3-45.6) 39.6 (36.6-42.8) 43.9 (40.1-48.7) 33.6 (30.4-37) 38.7 (35.9-42.2)
2030 39.1 (35.2-44.5) 39.9 (36.5-45.7) 39.7 (37-42.8) 46.4 (41.9-50.9) 34.3 (30.9-38.2) 40.2 (37.2-43.5)
2040 38.7 (35-44.2) 39.8 (36.3-45.8) 39.5 (36.9-42.7) 48.2 (43.8-53.1) 35.3 (32-38.9) 41.6 (38.8-45.3)
2050 38.4 (34.7-44.2) 39.9 (36.8-45.5) 39.2 (36.9-42.5) 51 (46.1-55.9) 37 (33.6-40.9) 43.8 (40.8-47.5)
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Supplementary Figures

Genetic effects on diabetes incidence

Supplementary Figure S1: Distribution of odds ratios of diabetes before and after
standardisation.

13



Body mass index model

In this section we provide more detailed results for the BMI model. Supplementary
Figure S2 provides the fitted model and examples of individual BMI trajectories for
selected individuals. Supplementary Figures S3–S8 compare the prevalence of
different BMI categories in different age groups, gender and race with the National
Health Survey results.

Supplementary Figure S2: Overall model and example of simulated BMI trajecto-
ries by race and gender. Overall BMI model: mean and 95% prediction interval are
plotted with overlaid line segments representing individuals’ BMI measurements at 2
time points. Example: individual data are indicated by dark lines and simulated BMI
trajectories are indicated by light lines.
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Supplementary Figure S3: Estimated and forecasted BMI distribution of
Chinese by age groups and gender and aggregated statistics of 4 weight
status. Mean and 95% prediction intervals are plotted. Data are presented as bars.
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Supplementary Figure S4: Estimated and forecasted BMI distribution of
Chinese by age groups and gender and aggregated statistics of 4 BMI risk
category status. Mean and 95% prediction intervals are plotted. Data are presented
as bars.
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Supplementary Figure S5: Estimated and forecasted BMI distribution of
Malay by age groups and gender and aggregated statistics of 4 weight status.
Mean and 95% prediction intervals are plotted. Data are presented as bars.
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Supplementary Figure S6: Estimated and forecasted BMI distribution of
Malay by age groups and gender and aggregated statistics of 4 BMI risk
category status. Mean and 95% prediction intervals are plotted. Data are presented
as bars.
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Supplementary Figure S7: Estimated and forecasted BMI distribution of
Indian by age groups and gender and aggregated statistics of 4 weight status.
Mean and 95% prediction intervals are plotted. Data are presented as bars.
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Supplementary Figure S8: Estimated and forecasted BMI distribution of
Indian by age groups and gender and aggregated statistics of 4 BMI risk
category status. Mean and 95% prediction intervals are plotted. Data are presented
as bars.
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Sensitivity analysis

Supplementary Figure S9: Estimated and forecasted T2DM prevalence
among working age adults from 2 models. Mean and 95% prediction intervals
are plotted.
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Trace plots for parameter estimation

Supplementary Figure S10: Trace plots for parameters of BMI model in Chinese
females.
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Supplementary Figure S11: Trace plots for parameters of BMI model in Chinese
males.
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Supplementary Figure S12: Trace plots for parameters of BMI model in Malay
females.
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Supplementary Figure S13: Trace plots for parameters of BMI model in Malay
males.
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Supplementary Figure S14: Trace plots for parameters of BMI model in Indian
females.
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Supplementary Figure S15: Trace plots for parameters of BMI model in Indian
males.
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Supplementary Figure S16: Trace plots for parameters of model for correcting
diabetic status.

28



Supplementary Figure S17: Trace plots for parameters of Diabetes Mellitus model.
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Supplementary Figure S18: Trace plots for parameters of simple Diabetes Mellitus
model without BMI and genetic risk.
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