Skip to main content

Advertisement

Log in

Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

In order to investigate whether short- or long-term glycemic fluctuations could induce oxidative stress and chronic inflammation, we evaluated the relationships between glycemic variability, oxidative stress markers, and high-sensitivity C-reactive protein (hs-CRP). We enrolled 34 patients with type 2 diabetes. As a measure of short-term glycemic variability, mean amplitude of glycemic excursions (MAGE) was computed from continuous glucose monitoring system data. For determining long-term glycemic variability, we calculated the standard deviation (SD) of hemoglobin A1c (HbA1c) levels measured over a 2-year period. Levels of oxidative stress markers: 8-iso-prostaglandin F2α (8-iso-PGF2α), thiobarbituric acid-reactive substance (TBARS), 8-hydroxydeoxyguanosine (8-OHdG), and hs-CRP were measured. MAGE was significantly correlated with the SD of HbA1c levels (r = 0.73, p < 0.001) but not with HbA1c level. The levels of hs-CRP, TBARS, 8-OHdG, and 8-iso-PGF2α were significantly correlated with MAGE (r = 0.54, p = 0.001; r = 0.82, p < 0.001; r = 0.70, p < 0.001; r = 0.60, p < 0.001) and the SD of HbA1c levels (r = 0.53, p = 0.001; r = 0.73, p < 0.001; r = 0.69, p < 0.001; r = 0.43, p = 0.01) but not with HbA1c level. Relationships between 8-iso-PGF2α and MAGE or the SD of HbA1c levels remained significant after adjusting for other markers of diabetic control (R 2 = 0.684, R 2 = 0.595, p < 0.001, respectively). Both acute and chronic blood glucose variability can induce oxidative stress and chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Stratton IM, Adler AI, Neil HA et al, UK Prospective Diabetes Study Group (2000) Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35). BMJ 321:405–412

    Google Scholar 

  2. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular disease. J Hypertens 18:655–673

    Article  PubMed  CAS  Google Scholar 

  3. Harrison D, Griendling KK, Landmesser U et al (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A–11A

    Article  PubMed  CAS  Google Scholar 

  4. Brownlee M (2005) The pathophysiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  PubMed  CAS  Google Scholar 

  5. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  PubMed  CAS  Google Scholar 

  6. Monnier L, Colette C, Boniface H (2006) Contribution of postprandial glucose to chronic hyperglycemia: from the ‘glucose triad’ to the trilogy of ‘sevens’. Diabetes Metab 32:2S12–2S17

    Google Scholar 

  7. Derr R, Garrett E, Stacy GA, Saudek CD (2003) Is HbA1c Affected by glycemic instability? Diabetes Care 26:2728–2733

    Article  PubMed  Google Scholar 

  8. Waden J, Forsblom C, Thorn LM, Gordin D, Saraheimo M, Groop PH (2009) A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes. Diabetes 58:2649–2655

    Article  PubMed  CAS  Google Scholar 

  9. Prince CT, Becker DJ, Costacou T, Miller RG, Orchard TJ (2007) Changes in glycemic control and risk of coronary artery disease in type 1 diabetes mellitus: findings from the Pittsburgh Epidemiology of Diabetes Complications Study (EDC). Diab Tologia 50:2280–2288

    Article  CAS  Google Scholar 

  10. Siegelaar SE, Holleman F, Hoekstra JB, DeVries JH (2010) Review glucose variability; does it matter? Endocr Rev 31:171–182

    Article  PubMed  CAS  Google Scholar 

  11. Monnier L, Colette C, Boegner C, Pham TC, Lapinski H, Boniface H (2007) Continuous glucose monitoring in patients with type 2 diabetes: Why? When? Whom? Diabetes Metab 33:247–252

    Article  PubMed  CAS  Google Scholar 

  12. Monnier L, Mas E, Ginet C et al (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–1687

    Article  PubMed  CAS  Google Scholar 

  13. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  14. Kohnert KD, Augstein P, Zander E et al (2009) Glycemic variability correlates strongly with postprandial beta-cell dysfunction in a segment of type 2 diabetic patients using oral hypoglycemic agents. Diabetes Care 32:1058–1062

    Article  PubMed  CAS  Google Scholar 

  15. Roberts LJ, Morrow JD (2000) Measurement of F (2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513

    Article  PubMed  CAS  Google Scholar 

  16. Morrow JD (2000) The isoprostanes: their quantification as an index of oxidant stress status in vivo. Drug Metab Rev 32:377–385

    Article  PubMed  CAS  Google Scholar 

  17. Davi G, Ciabattoni G, Consoli A et al (1999) In vivo formation of 8-iso-prostaglandin F2α and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 99:224–229

    Article  PubMed  CAS  Google Scholar 

  18. Minuz P, Patrignani P, Gaino S et al (2002) Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease. Circulation 106:2800–2805

    Article  PubMed  CAS  Google Scholar 

  19. Davi G, Guagnano MT, Ciabattoni G et al (2002) Platelet activation in obese women: role of inflammation and oxidant stress. JAMA 288:2008–2014

    Article  PubMed  CAS  Google Scholar 

  20. Monnier L, Colette C, Mas E et al (2010) Regulation of oxidative stress by glycemic control: evidence for an independent inhibitory effect of insulin therapy. Diabetologia 53:562–571

    Article  PubMed  CAS  Google Scholar 

  21. Pan HZ, Zhang L, Guo MY et al (2010) The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta Diabetol 47(suppl 1):71–76

    Article  PubMed  CAS  Google Scholar 

  22. Bolajoko EB, Mossanda KS, Adeniyi F, Akinosun O, Fasanmade A, Moropane M (2008) Antioxidant and oxidative stress status in type 2 diabetes and diabetic foot ulcer. S Afr Med J 98:614–617

    PubMed  CAS  Google Scholar 

  23. Quagliaro L, Piconi L, Assalone R, Martinelli L, Motz E, Ceriello A (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: The role of protein kinase C and NAD(P)H-Oxidase activation. Diabetes 52:2795–2804

    Article  PubMed  CAS  Google Scholar 

  24. Hsieh CJ, Weng SW, Liou CW et al (2011) Tissue-specific differences in mitochondrial DNA content in type 2 diabetes. Diabetes Res Clin Pract 92:106–110

    Article  PubMed  CAS  Google Scholar 

  25. Amanullah S, Jarari A, Govindan M, Basha MI, Khatheeja S (2010) Association of hs-CRP with diabetic and non-diabetic individuals. Jordan J Biol Sci 3:7–12

    CAS  Google Scholar 

  26. Huang IC, Wang PW, Liu RT, Tung SC, Chen JF, Kuo MC, Hsieh CJ (2012) The influence of self-monitoring blood glucose frequency on the oscillation of hemoglobulin A1c and chronic complications. Chang Gung Med 35:46–53

    Google Scholar 

  27. Choi SW, Benzie I, Ma SW, Strain JJ, Hannigan BM (2008) Acute hyperglycemia and oxidative stress: direct cause and effect? Free Radic Biol Med 44:1217–1231

    Article  PubMed  CAS  Google Scholar 

  28. Hirsch IB, Brownlee M (2005) Should minimal blood glucose variability become the gold standard of glycemic control? J Diabetes Complicat 19:178–181

    Article  PubMed  Google Scholar 

  29. Wentholt IM, Kulik W, Michels RP, Hoekstra JB, DeVries JH (2008) Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes. Diabetologia 51:183–190

    Article  PubMed  CAS  Google Scholar 

  30. Siegelaar SE, Barwari T, Kulik W, Hoekstra JB, DeVries HJ (2011) No relevant relationship between glucose variability and oxidative stress in well-regulated type 2 diabetes patients. J Diabetes Sci Technol 5:86–92

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant (CMRPG890481) from the Chang Gung Memorial Hospital-Kaohsiung Medical Center, Taiwan. No potential conflicts of interest relevant to this article were reported. The patients enrolled in this study were under the care of Ching Jung Hsieh and Ju-Chun Huang and. I-Chin Huang. Ching Jung Hsieh performed the data analysis and literature survey. Chih-Min Chang and Ching Jung Hsieh wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Jung Hsieh.

Additional information

Communicated by Guido Pozza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CM., Hsieh, CJ., Huang, JC. et al. Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetol 49 (Suppl 1), 171–177 (2012). https://doi.org/10.1007/s00592-012-0398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-012-0398-x

Keywords

Navigation