Skip to main content

Advertisement

Log in

1,5-Anhydroglucitol in diabetes mellitus

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The measure of glycated hemoglobin (HbA1c) concentration is the gold standard of glycemic control index in diabetes management and is well known as a marker for diabetes complications. However, HbA1c level neither accurately reflect glucose fluctuations, nor does it provide a clear indication of glycemic control in recent days or weeks. HbA1c concentration measurement can be confounded in patients with anemia, hemoglobinopathy, liver disease, or renal impairment. 1,5-Anhydroglucitol (1,5-AG) structurally resembles glucose. It can be influenced by diet or medication, gender and race, especially severe renal disease and various pathological conditions. Most notably, 1,5-AG level is reflective of short-term glucose status, postprandial hyperglycemia, and glycemic variability which are not captured by HbA1c assay. 1,5-AG may suggest an alternative index of subtypes of diabetes and a warning sign of diabetes complications. This review provides an overview of our current understanding of the role of 1,5-AG marker in diabetes. However, further investigations on the associations between this glycemic marker and diabetes complications are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. The Diabetes Control and Complications Trial Research Group, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993)

    Article  Google Scholar 

  2. UK Prospective Diabetes Study (UKPDS) Group, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998)

    Article  Google Scholar 

  3. American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 33, S62–S69 (2011)

    Article  Google Scholar 

  4. K.M. Dungan, 1,5-Anhydroglucitol (GlycoMark) as a marker of short-term glycemic control and glycemic excursions. Expert Rev. Mol. Diagn. 8, 9–19 (2008)

    Article  PubMed  CAS  Google Scholar 

  5. T. Yamanouchi, Y. Akanuma, Serum 1,5-anhydroglucitol (1,5 AG): new clinical marker for glycemic control. Diabetes Res. Clin. Pract. 24(Suppl), S261–S268 (1994)

    Article  PubMed  Google Scholar 

  6. M. Koga, S. Kasayama, Clinical usefulness of glycated albumin as an another glycemic control marker. Endocr. J. 57, 751–762 (2010)

    Article  PubMed  CAS  Google Scholar 

  7. T. Yamanouchi, Y. Tachibana, H. Akanuma, S. Minoda, T. Shinohara, H. Moromizato, H. Miyashita, I. Akaoka, Origin and disposal of 1,5-anhydroglucitol, a major polyol in the human body. Am. J. Physiol. 263, E268–E273 (1992)

    PubMed  CAS  Google Scholar 

  8. T. Yamanouchi, Y. Akanuma, Serum 1,5-anhydroglucitol (1,5 AG): new clinical marker for glycemic control. Diabetes Res. Clin. Pract. 24, S261–S268 (1994)

    Article  PubMed  Google Scholar 

  9. M. Kishimoto, Y. Yamasaki, M. Kubota, K. Arai, T. Morishima, R. Kawamori, T. Kamada, 1,5-Anhydro-d-glucitol evaluates daily glycemic excursions in well-controlled NIDDM. Diabetes Care 18, 1156–1159 (1995)

    Article  PubMed  CAS  Google Scholar 

  10. J.B. Buse, J.L. Freeman, S.V. Edelman, L. Jovanovic, J.B. McGill, Serum 1,5-anhydroglucitol (GlycoMark): a short-term glycemic marker. Diabetes Technol Ther 5, 355–363 (2003)

    Article  PubMed  CAS  Google Scholar 

  11. M. Dworacka, H. Winiarska, M. Szymanska, S. Kuczynski, K. Szczawinska, B. Wierusz-Wysocka, 1,5-anhydro-D-glucitol: a novel marker of glucose excursions. Int J Clin Pract Suppl 129, 40–44 (2002)

    PubMed  Google Scholar 

  12. K.M. Dungan, J.B. Buse, J. Largay, M.M. Kelly, E.A. Button, S. Kato, S. Wittlin, 1,5-Anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care 29, 1214–1219 (2006)

    Article  PubMed  CAS  Google Scholar 

  13. S.N. Mehta, N. Schwartz, J.R. Wood, B.M. Svoren, L.M. Laffel, Evaluation of 1,5-anhydroglucitol, hemoglobin A1c, and glucose levels in youth and young adults with type 1 diabetes and healthy controls. Pediatr Diabetes 13, 278–284 (2012)

    Article  PubMed  CAS  Google Scholar 

  14. M.J. Kim, H.S. Jung, Y. Hwang-Bo, S.W. Cho, H.C. Jang, S.Y. Kim, K.S. Park, Evaluation of 1,5-anhydroglucitol as a marker for glycemic variability in patients with type 2 diabetes mellitus. Acta Diabetol. (2011). doi:10.1007/s00592-011-0302-0

  15. M. Koga, J. Murai, H. Saito, M. Mukai, S. Kasayama, Habitual intake of dairy products influences serum 1,5-anhydroglucitol levels independently of plasma glucose. Diabetes Res. Clin. Pract. 90, 122–125 (2010)

    Article  PubMed  CAS  Google Scholar 

  16. J.K. Kirk, L.V. Passmore, R.A. Bell, K.M. Narayan, R.B. D’Agostino Jr, T.A. Arcury, S.A. Quandt, Disparities in A1C levels between Hispanics and non-Hispanic white adults with diabetes: a meta-analysis. Diabetes Care 31, 240–246 (2008)

    Article  PubMed  Google Scholar 

  17. A.F. Brown, E.W. Gregg, M.R. Stevens, A.J. Karter, M. Weinberger, M.M. Safford, T.L. Gary, D.A. Caputo, B. Waitzfelder, C. Kim, G.L. Beckles, Race, ethnicity, socioeconomic position, and quality of care for adults with diabetes enrolled in managed care: the Translating Research into Action for Diabetes (TRIAD) Study. Diabetes Care 28, 2864–2870 (2005)

    Article  PubMed  Google Scholar 

  18. W.H. Herman, K.M. Dungan, B.H. Wolffenbuttel, J.B. Buse, J.L. Fahrbach, H. Jiang, S. Martin, Racial and ethnic differences in mean plasma glucose, hemoglobin A1c, and 1,5-anhydroglucitol in over 2000 patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 94, 1689–1694 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. A.S. Januszewski, C. Karschimkus, K.E. Davis, D. O’Neal, G. Ward, A.J. Jenkins, Plasma 1,5 anhydroglucitol levels, a measure of short-term glycaemia: assay assessment and lower levels in diabetic vs. non-diabetic subjects. Diabetes Res. Clin. Pract. 95, e17–e19 (2012)

    Article  PubMed  CAS  Google Scholar 

  20. M. Koga, J. Murai, H. Saito, M. Mukai, S. Kasayama, Y. Moriwaki, T. Yamamoto, Close relationship between serum concentrations of 1,5-anhydroglucitol and uric acid in non-diabetic male subjects implies common renal transport system. Clin. Chim. Acta 410, 70–73 (2009)

    Article  PubMed  CAS  Google Scholar 

  21. M. Koga, J. Murai, H. Saito, M. Mukai, D. Toya, N. Tanaka, H. Kanehara, Y. Bando, S. Kasayama, 1,5-Anhydroglucitol levels are low irrespective of plasma glucose levels in patients with chronic liver disease. Ann. Clin. Biochem. 48, 121–125 (2011)

    Article  PubMed  CAS  Google Scholar 

  22. J. Murai, M. Koga, H. Saito, M. Mukai, S. Kasayama, Serum 1,5-anhydroglucitol is low in gastrectomized men. Acta Diabetol. (2011). doi:10.1007/s00592-011-0354-1

  23. K.E. Kinnaird, T.J. Sauerwein, Lack of correlation between 1,5-anhydroglucitol assay and oral glucose tolerance test in patients with cystic fibrosis. Endocr Pract 16, 167–170 (2010)

    Article  PubMed  Google Scholar 

  24. T. Yamanouchi, T. Shinohara, N. Ogata, Y. Tachibana, I. Akaoka, H. Miyashita, Common reabsorption system of 1,5-anhydro-d-glucitol, fructose, and mannose in rat renal tubule. Biochim. Biophys. Acta 1291, 89–95 (1996)

    Article  PubMed  Google Scholar 

  25. S. Tazawa, T. Yamato, H. Fujikura, M. Hiratochi, F. Itoh, M. Tomae, Y. Takemura, H. Maruyama, T. Sugiyama, A. Wakamatsu, T. Isogai, M. Isaji, SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-d-glucitol, and fructose. Life Sci. 76, 1039–1050 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. H.S. Freitas, G.F. Anhe, K.F. Melo, M.M. Okamoto, M. Oliveira-Souza, S. Bordin, U.F. Machado, Na-glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1 expression and activity. Endocrinology 149, 717–724 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. H. Rahmoune, P.W. Thompson, J.M. Ward, C.D. Smith, G. Hong, J. Brown, Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin dependent diabetes. Diabetes 54, 3427–3434 (2005)

    Article  PubMed  CAS  Google Scholar 

  28. N. Nakamura, S. Masuda, K. Takahashi, H. Saito, M. Okuda, K. Inui, Decreased expression of glucose and peptide transporters in rat remnant kidney. Drug Metab. Pharmacokinet. 19, 41–47 (2004)

    Article  PubMed  CAS  Google Scholar 

  29. H. Shimizu, A. Shouzu, M. Nishikawa, S. Omoto, T. Hayakawa, Y. Miyake, T. Yonemoto, M. Inada, Serum concentration and renal handling of 1,5-anhydro-d-glucitol in patients with chronic renal failure. Ann. Clin. Biochem. 36, 749–754 (1999)

    PubMed  CAS  Google Scholar 

  30. T. Niwa, L. Dewald, J. Sone, T. Miyazaki, M. Kajita, Quantification of serum 1,5-anhydroglucitol in uremic and diabetic patients by liquid chromatography/mass spectrometry. Clin. Chem. 40, 260–264 (1994)

    PubMed  CAS  Google Scholar 

  31. H. Yamada, A. Hishida, A. Kato, T. Yoneyama, 1,5-Anhydroglucitol as a marker for the differential diagnosis of acute and chronic renal failure. Nephron 73, 707–709 (1996)

    Article  PubMed  CAS  Google Scholar 

  32. W.J. Kim, C.Y. Park, K.B. Lee, S.E. Park, E.J. Rhee, W.Y. Lee, K.W. Oh, S.W. Park, Serum 1,5-anhydroglucitol concentrations are a reliable index of glycemic control in type 2 diabetes with mild or moderate renal dysfunction. Diabetes Care 35, 281–286 (2012)

    Article  PubMed  CAS  Google Scholar 

  33. J.B. McGill, T.G. Cole, W. Nowatzke, S. Houghton, E.B. Ammirati, T. Gautille, M.J. Sarno, 1,5-Anhydroglucitol levels in adult patients with diabetes reflect longitudinal changes of glycemia: a U.S. trial of the GlycoMark assay. Diabetes Care 27, 1859–1865 (2004)

    Article  PubMed  CAS  Google Scholar 

  34. K.M. Dungan, J.B. Buse, W.H. Herman, R.F. Arakaki, H.H. Jiang, J.G. Jacobson, J.L. Fahrbach, Potential for use of 1,5-anhydroglucitol when initiating insulin therapy in people with type 2 diabetes and suboptimal control with oral antidiabetic drugs. Diabetes Res. Clin. Pract. 96, e66–e69 (2012)

    Article  PubMed  CAS  Google Scholar 

  35. L. Liu, X. Wan, J. Liu, Z. Huang, X. Cao, Y. Li, Increased 1,5-anhydroglucitol predicts glycemic remission in patients with newly diagnosed type 2 diabetes treated with short-term intensive insulin therapy. Diabetes Technol. Ther. (2012). doi:10.1089/dia.2012.0055

  36. I. Kawasaki, T. Sato, M. Hosoi, K. Yoshioka, T. Yamakita, M. Fukumoto, N. Tanaka, H. Natsuyama, M. Ueda, S. Fujii, Serum 1,5-anhydroglucitol is a strong predictor of the postprandial hyperglycemia in Type 2 diabetes patients (Abstract). Diabetes 54, A76 (2005)

    Google Scholar 

  37. J.C. Won, C.Y. Park, H.S. Park, J.H. Kim, E.S. Choi, E.J. Rhee, W.Y. Lee, K.W. Oh, S.W. Kim, S.W. Park, 1,5-Anhydroglucitol reflects postprandial hyperglycemia and a decreased insulinogenic index, even in subjects with prediabetes and well-controlled type 2 diabetes. Diabetes Res. Clin. Pract. 84, 51–57 (2009)

    Article  PubMed  CAS  Google Scholar 

  38. M. Dworacka, H. Winiarska, The application of plasma 1,5-anhydro-d-glucitol for monitoring type 2 diabetic patients. Dis. Markers 21, 127–132 (2005)

    PubMed  CAS  Google Scholar 

  39. J. Sun, J.T. Dou, X.L. Wang, G.Q. Yang, Z.H. Lü, H. Zheng, F.L. Ma, J.M. Lu, Y.M. Mu, Correlation between 1,5-anhydroglucitol and glycemic excursions in type 2 diabetic patients. Chin. Med. J. (Engl) 124, 3641–3645 (2011)

    CAS  Google Scholar 

  40. Y. Wang, Y.L. Zhang, Y.P. Wang, C.H. Lei, Z.L. Sun, A study on the association of serum 1,5-anhydroglucitol levels and the hyperglycemic excursions as measured by continuous glucose monitoring system among type 2 diabetes in a Chinese population. Diabetes Metab. Res. Rev. 28, 357–362 (2012)

    Article  PubMed  Google Scholar 

  41. M. Kishimoto, M. Noda, A pilot study of the efficacy of miglitol and sitagliptin for type 2 diabetes with a continuous glucose monitoring system and incretin-related markers. Cardiovasc. Diabetol. 22, 115 (2011)

    Google Scholar 

  42. T. Yamanouchi, Y. Akanuma, T. Toyota, T. Kuzuya, T. Kawai, S. Kawazu, S. Yoshioka, Y. Kanazawa, M. Ohta, S. Baba, K. Kosaka, Comparison of 1,5-anhydroglucitol, HbA1c, and fructosamine for detection of diabetes mellitus. Diabetes 40, 52–57 (1991)

    Article  PubMed  CAS  Google Scholar 

  43. S. Tsukui, I. Kobayashi, Effects of age and obesity on glycated haemoglobin and 1,5-anhydroglucitol in screening for type 2 diabetes mellitus. Diabet. Med. 12, 899–903 (1995)

    Article  PubMed  CAS  Google Scholar 

  44. M. Goto, R. Yamamoto-Honda, T. Shimbo, A. Goto, Y. Terauchi, Y. Kanazawa, M. Noda, Correlation between baseline serum 1,5-anhydroglucitol levels and 2-hour post-challenge glucose levels during oral glucose tolerance tests. Endocr. J. 58, 13–17 (2011)

    Article  PubMed  CAS  Google Scholar 

  45. D.A. Robertson, K.G. Alberti, G.K. Dowse, P. Zimmet, J. Tuomilehto, H. Gareeboo, Is serum anhydroglucitol an alternative to the oral glucose tolerance test for diabetes screening? The Mauritius Noncommunicable Diseases Study Group. Diabet. Med. 10, 56–60 (1993)

    Article  PubMed  CAS  Google Scholar 

  46. T.M. Nguyen, L.M. Rodriguez, K.J. Mason, R.A. Heptulla, Serum 1,5-anhydroglucitol (Glycomark) levels in children with and without type 1 diabetes mellitus. Pediatr Diabetes 8, 214–219 (2007)

    Article  PubMed  Google Scholar 

  47. A.C. Moses, P. Raskin, N. Khutoryansky, Does serum 1,5-anhydroglucitol establish a relationship between improvements in HbA1c and postprandial glucose excursions? Supportive evidence utilizing the differential effects between biphasic insulin aspart 30 and insulin glargine. Diabet. Med. 25, 200–205 (2008)

    Article  PubMed  CAS  Google Scholar 

  48. R. Beck, M. Steffes, D. Xing, K. Ruedy, N. Mauras, D.M. Wilson, C. Kollman, Diabetes Research in Children Network (DirecNet) Study Group, The interrelationships of glycemic control measures: HbA1c, glycated albumin, fructosamine, 1,5-anhydroglucitrol, and continuous glucose monitoring. Pediatr Diabetes 12, 690–695 (2011)

    Article  PubMed  CAS  Google Scholar 

  49. M. Koga, J. Murai, H. Saito, M. Mukai, S. Kasayama, A. Imagawa, T. Hanafusa, Serum 1,5-anhydroglucitol levels in patients with fulminant type 1 diabetes are lower than those in patients with type 2 diabetes. Clin. Biochem. 43, 1265–1267 (2010)

    Article  PubMed  CAS  Google Scholar 

  50. M. Pontoglio, D. Prié, C. Cheret, A. Doyen, C. Leroy, P. Froguel, G. Velho, M. Yaniv, G. Friedlander, HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO Rep. 1, 359–365 (2000)

    Article  PubMed  CAS  Google Scholar 

  51. A. Pal, A.J. Farmer, C. Dudley, M.P. Selwood, B.A. Barrow, R. Klyne, J.P. Grew, M.I. McCarthy, A.L. Gloyn, K.R. Owen, Evaluation of serum 1,5 anhydroglucitol levels as a clinical test to differentiate subtypes of diabetes. Diabetes Care 33, 252–257 (2010)

    Article  PubMed  CAS  Google Scholar 

  52. J. Skupien, S. Gorczynska-Kosiorz, T. Klupa, K. Wanic, E.A. Button, J. Sieradzki, M.T. Malecki, Clinical application of 1,5-anhydroglucitol measurements in patients with hepatocyte nuclear factor-1alpha maturity-onset diabetes of the young. Diabetes Care 31, 1496–1501 (2008)

    Article  PubMed  CAS  Google Scholar 

  53. W.J. Kim, C.Y. Park, S.E. Park, E.J. Rhee, W.Y. Lee, K.W. Oh, S.W. Park, S.W. Kim, H.S. Park, Y.J. Kim, S.J. Song, H.Y. Ahn, Serum 1,5-anhydroglucitol is associated with diabetic retinopathy in Type 2 diabetes. Diabet. Med. (2012). doi:10.1111/j.1464-5491.2012.03613.x

  54. E. Selvin, L.M. Francis, C.M. Ballantyne, R.C. Hoogeveen, J. Coresh, F.L. Brancati, M.W. Steffes, Nontraditional markers of glycemia: associations with microvascular conditions. Diabetes Care 34, 960–967 (2011)

    Article  PubMed  CAS  Google Scholar 

  55. R.A. Kowluru, Q. Zhong, M. Kanwar, Metabolic memory and diabetic retinopathy: role of inflammatory mediators in retinal pericytes. Exp. Eye Res. 90, 617–623 (2010)

    Article  PubMed  CAS  Google Scholar 

  56. W. Li, X. Liu, M. Yanoff, S. Cohen, X. Ye, Cultured retinal capillary pericytes die by apoptosis after an abrupt fluctuation from high to low glucose levels: a comparative study with retinal capillary endothelial cells. Diabetologia 39, 537–547 (1996)

    Article  PubMed  CAS  Google Scholar 

  57. M. Dworacka, H. Winiarska, M. Borowska, M. Abramczyk, T. Bobkiewicz-Kozlowska, G. Dworacki, Pro-atherogenic alterations in T-lymphocyte subpopulations related to acute hyperglycaemia in type 2 diabetic patients. Circ. J. 71, 962–967 (2007)

    Article  PubMed  CAS  Google Scholar 

  58. M. Ohira, K. Endo, T. Oyama, T. Yamaguchi, N. Ban, H. Kawana, D. Nagayama, A. Nagumo, A. Saiki, T. Murano, H. Watanabe, Y. Miyashita, K. Shirai, Improvement of postprandial hyperglycemia and arterial stiffness upon switching from premixed human insulin 30/70 to biphasic insulin aspart 30/70. Metabolism 60, 78–85 (2011)

    Article  PubMed  CAS  Google Scholar 

  59. M. Watanabe, Y. Kokubo, A. Higashiyama, Y. Ono, Y. Miyamoto, T. Okamura, Serum 1,5-anhydro-d-glucitol levels predict first-ever cardiovascular disease: an 11-year population-based cohort study in Japan, the Suita study. Atherosclerosis 216, 477–483 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol-Young Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, W.J., Park, CY. 1,5-Anhydroglucitol in diabetes mellitus. Endocrine 43, 33–40 (2013). https://doi.org/10.1007/s12020-012-9760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9760-6

Keywords

Navigation