Skip to main content
Log in

Saxagliptin: a new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2009

Abstract

Type 2 diabetes mellitus (T2DM) is a global epidemic with increasing impact on individuals and healthcare providers. Available treatments (such as metformin, sulfonylureas, glitazones, and insulin) have proven unsatisfactory in producing a long-lasting impact on glycemic control. In addition, most of these treatments have undesirable side effects such as weight gain and hypoglycemia. As a result, exploring new treatment targets and new therapies is mandatory in order to treat this condition. The incretin pathway, in particular glucagon-like peptide (GLP-1), plays an important pathological role in the development of T2DM, and treatments targeting the incretin system have recently become available. These can mainly be divided into two broad categories; GLP-1 agonists/analogs (exenatide, liraglutide), and dipeptidyl peptidase-4 (DPP-4; the enzyme responsible for rapid inactivation of incretins) inhibitors (sitagliptin, vildagliptin). Saxagliptin is a novel DPP-4 inhibitor that has recently completed phase 3 studies. Saxagliptin is a potent and specific inhibitor of DPP-4 (in comparison with other dipeptidyl peptidase enzymes) that is given once daily. Current data suggest that saxagliptin as monotherapy or in combination with metformin, glyburide, or a glitazone results in significant reductions in fasting and postprandial plasma glucose and hemoglobin A1c (HbA1c). Saxagliptin is well tolerated and does not increase hypoglycemia compared with the placebo, and is probably weight neutral. Saxagliptin will be a new effective drug in the currently available variety of antidiabetic medications for patients with T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. International Diabetes Federation. The Diabetes Atlas. 3rd edition. Brussels: International Diabetes Federation; 2006.

    Google Scholar 

  2. De Groot M Anderson R Freedland KE Clouse RE Lustman PJ. Association of depression and diabetes complications: a meta-analysis. Psychosom Med. 2001;63:619–630.

    PubMed  Google Scholar 

  3. Wanless D. Securing our future health: taking a long-term view. HM Treasury. 2002. Available at: http://www.hm-treasury.gov.uk/d/letter_to_chex.pdf. Accessed February 2009.

  4. Jacobson AM. Impact of improved glycemic control on quality of life in patients with diabetes. Endocr Pract. 2004;10:502–508.

    PubMed  Google Scholar 

  5. Facchini FS Hua N Abbasi F Reaven GM. Insulin resistance as a predictor of age-related diseases. J Clin Endocrinol Metab. 2001;86:3574–3578.

    Article  CAS  PubMed  Google Scholar 

  6. Stumvoll M Goldstein BJ van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365:1333–1346.

    Article  CAS  PubMed  Google Scholar 

  7. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–1607.

    Article  CAS  PubMed  Google Scholar 

  8. Kahn SE Hull RL Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–846.

    Article  CAS  PubMed  Google Scholar 

  9. Kahn SE. Quantification of the relationship between insulin sensitivity and B-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42:1663–1672.

    CAS  Google Scholar 

  10. Perley M Kipnis DM. Plasma insulin responses to glucose and tolbutamide of normal weight and obese diabetic and nondiabetic subjects. Diabetes. 1966;15:867–874.

    CAS  PubMed  Google Scholar 

  11. Polonsky KS Given BD Van Cauter E. Twentyfour-hour profiles and patterns of insulin secretion in normal and obese subjects. J Clin Invest. 1988;81:442–448.

    Article  CAS  PubMed  Google Scholar 

  12. Kahn SE. The importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab. 2001;86:4047–4058.

    Article  CAS  PubMed  Google Scholar 

  13. Burcelin R Knauf C Cani PD. Pancreatic alphacell dysfunction in diabetes. Diabetes Metab. 2008;34(suppl. 2):S49–S55.

    Article  CAS  PubMed  Google Scholar 

  14. Del PS Bianchi C Marchetti P. Beta-cell function and anti-diabetic pharmacotherapy. Diabetes Metab Res Rev. 2007;23:518–527.

    Article  Google Scholar 

  15. Kahn SE Haffner SM Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–2443.

    Article  CAS  PubMed  Google Scholar 

  16. Black C Donnelly P McIntyre L Royle PL Shepherd JP Thomas S. Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007;(2):CD004654.

    PubMed  Google Scholar 

  17. Baggio LL Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–2157.

    Article  CAS  PubMed  Google Scholar 

  18. Moore B. On the treatment of diabetu mellitus by acid extract of duodenal mucous membrane. Biochem J. 1906;1:28–38.

    CAS  PubMed  Google Scholar 

  19. Elrick H Stimmler L Hlad CJ Jr. Rai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;24:1076–1082.

    Article  CAS  PubMed  Google Scholar 

  20. Ahren B. Gut peptides and type 2 diabetes mellitus treatment. Curr Diab Rep. 2003;3:365–372.

    Article  PubMed  Google Scholar 

  21. Green BD Flatt PR. Incretin hormone mimetics and analogues in diabetes therapeutics. Best Pract Res Clin Endocrinol Metab. 2007;21:497–516.

    Article  CAS  PubMed  Google Scholar 

  22. Nauck MA Homberger E Siegel EG, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63:492–498.

    Article  CAS  PubMed  Google Scholar 

  23. Fehmann HC Goke R Goke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev. 1995;16:390–410.

    CAS  PubMed  Google Scholar 

  24. Gautier JF Choukem SP Girard J. Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. Diabetes Metab. 2008;34(suppl. 2):S65–S72.

    Article  Google Scholar 

  25. Dupre J Ross SA Watson D Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab. 1973;37:826–828.

    Article  CAS  PubMed  Google Scholar 

  26. Trumper A Trumper K Trusheim H Arnold R Goke B Horsch D. Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol. 2001;15:1559–1570.

    Article  CAS  PubMed  Google Scholar 

  27. Yip RG Wolfe MM. GIP biology and fat metabolism. Life Sci. 2000;66:91–103.

    Article  CAS  PubMed  Google Scholar 

  28. Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol. 2003;17:161–171.

    Article  CAS  PubMed  Google Scholar 

  29. Drucker DJ Philippe J Mojsov S Chick WL Habener JF. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A. 1987;84:3434–3438.

    Article  CAS  PubMed  Google Scholar 

  30. Barnett AH. New treatments in type 2 diabetes — a focus on the incretin-based therapies. Clin Endocrinol (Oxf). 2009;70:343–353.

    Article  CAS  Google Scholar 

  31. Drucker DJ. Glucagon-like peptide-1 and the islet beta-cell: augmentation of cell proliferation and inhibition of apoptosis. Endocrinology. 2003;144:5145–5148.

    Article  CAS  PubMed  Google Scholar 

  32. Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract. 2006;60:1454–1470.

    Article  CAS  PubMed  Google Scholar 

  33. Hansen L Deacon CF Orskov C Holst JJ. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology. 1999;140:5356–5363.

    Article  CAS  PubMed  Google Scholar 

  34. Deacon CF Johnsen AH Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab. 1995;80:952–957.

    Article  CAS  PubMed  Google Scholar 

  35. Mentlein R. Dipeptidyl-peptidase IV (CD26) - role in the inactivation of regulatory peptides. Regul Pept. 1999;85:9–24.

    Article  CAS  PubMed  Google Scholar 

  36. Drucker DJ Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696–1705.

    Article  CAS  PubMed  Google Scholar 

  37. Ahren B. DPP-4 inhibitors. Best Pract Res Clin Endocrinol Metab. 2007;21:517–533.

    Article  CAS  PubMed  Google Scholar 

  38. Green BD Flatt PR Bailey CJ. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc Dis Res. 2006;3:159–165.

    Article  PubMed  Google Scholar 

  39. Ahren B Holst JJ Martensson H Balkan B. Improved glucose tolerance and insulin secretion by inhibition of dipeptidyl peptidase IV in mice. Eur J Pharmacol. 2000;404:239–245.

    Article  CAS  PubMed  Google Scholar 

  40. Balkan B Kwasnik L Miserendino R Holst JJ Li X. Inhibition of dipeptidyl peptidase IV with NVPDPP728 increases plasma GLP-1 (7-36 amide) concentrations and improves oral glucose tolerance in obese Zucker rats. Diabetologia. 1999;42:1324–1331.

    Article  CAS  PubMed  Google Scholar 

  41. Pederson RA White HA Schlenzig D Pauly RP McIntosh CH Demuth HU. Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes. 1998;47:1253–1258.

    Article  CAS  PubMed  Google Scholar 

  42. Pospisilik JA Martin J Doty T, et al. Dipeptidyl peptidase IV inhibitor treatment stimulates betacell survival and islet neogenesis in streptozotocininduced diabetic rats. Diabetes. 2003;52:741–750.

    Article  CAS  PubMed  Google Scholar 

  43. Doupis J Veves A. DPP4 inhibitors: a new approach in diabetes treatment. Adv Ther. 2008;25:627–643.

    Article  CAS  PubMed  Google Scholar 

  44. Richter B Bandeira-Echtler E Bergerhoff K Lerch C. Emerging role of dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes. Vasc Health Risk Manag. 2008;4:753–768.

    CAS  PubMed  Google Scholar 

  45. Augeri DJ Robl JA Betebenner DA, et al. Discovery and preclinical profile of saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem. 2005;48:5025–5037.

    Article  CAS  PubMed  Google Scholar 

  46. Kirby MS Dorso C Wang A, et al. In vitro enzymologic characteristics of saxagliptin, a highly potent and selective DPP4 inhibitor with "slow binding" characteristics. Clin Chem Lab Med. 2008;46:A29. Abstract.

    Google Scholar 

  47. Wang A Dorso C Kopcho L Marcinkeviciene J Kirby MS. Implications of the prolonged dissociation rate of saxagliptin, a highly potent and selective DPP4 inhibitor, on plasma DPP measurements. Presented at: 68th Scientific Sessions of the American Diabetes Association; June 6–19, 2008; San Francisco, CA. Abstract 2088-PO.

  48. Boulton DW Geraldes M. Safety, tolerability, pharmacokinetics and pharmacodynamics of oncedaily oral doses of saxagliptin for 2 weeks in type 2 diabetic and healthy subjects. Presented at: 67th Scientific Sessions of the American Diabetes Association; June 22–26, 2007; Chicago, IL. Abstract 0606-P.

  49. Boulton DW Goyal A Li L Kornhauser DM Frevert U. The effects of age and gender on the singledose pharmacokinetics and safety of saxagliptin in healthy subjects. Presented at: 68th Scientific Sessions of the American Diabetes Association; June 6–19 2008; San Francisco, CA. Abstract 551-P.

  50. Pugh RN Murray-Lyon IM Dawson JL Pietroni MC Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60:646–649.

    Article  CAS  PubMed  Google Scholar 

  51. Patel C Castaneda L Frevert U Li L Kornhauser DM Boulton DW. Single-dose pharmacokinetics and safety of saxagliptin in subjects with hepatic impairment compared with healthy subjects. Presented at: 68th Scientific Sessions of the American Diabetes Association; June 6–19, 2008; San Francisco, CA. Abstract 537-P.

  52. Turner RC Cull CA Frighi V Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 1999;281:2005–2012.

    Article  CAS  PubMed  Google Scholar 

  53. Patel CG Li L Komoroski B Boulton DW. No meaningful pharmacokinetic drug-drug interaction between saxagliptin and metformin in healthy subjects. Presented at: 36th Annual Meeting of the American College of Clinical Pharmacology; September 9–11, 2007; San Francisco, CA. Abstract.

  54. Rosenstock J List J Sankoh S Chen R. Efficacy and tolerability of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-naïve subjects with type 2 diabetes: results from a phase 2 dose-ranging study. Presented at: 43rd annual meeting of the European Society for the Study of Diabetes; September 17–21, 2007; Amsterdam, Netherlands. Abstract.

  55. Rosenstock J Sankoh S List JF. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-naive patients with type 2 diabetes. Diabetes Obes Metab. 2008;10:376–386.

    Article  CAS  PubMed  Google Scholar 

  56. Rosenstock J Aguilar-Salinas CA Klein E List J Blauwet MB Chen R. Once-daily saxagliptin monotherapy improves glycemic control in drug-naïve patients with type 2 diabetes. Presented at: 68th Scientific Sessions of the American Diabetes Association; June 6–19, 2008; San Francisco, CA. Abstract 517-P.

  57. Defronzo RA Hissa M Blauwet MB Chen RS. Saxagliptin added to metformin improves glycemic control in patients with type 2 diabetes. Presented at: 67th Scientific Sessions of the American Diabetes Association; June 22–26, 2007; Chicago, IL. 2007. Abstract 0285-OR.

  58. Ravichandran S Chacra AR Tan GH Apanovitch A Chen R. Saxagliptin added to a sulfonylurea is safe and more efficacious than up-titrating a sulfonylurea in patients with type 2 diabetes. Presented at: 44rd annual meeting of the European Society for the Study of Diabetes; September 7–11, 2008; Rome, Italy. Abstract.

  59. Allen E Hollander P Li L Chen R. Saxagliptin added to a thiazolidinedione improves glycemic control in patients with inadequately controlled type 2 diabetes. Presented at: 44rd annual meeting of the European Society for the Study of Diabetes; September 7–11, 2008; Rome, Italy. Abstract.

  60. Chen R Pfützner A Jadzinsky M Paz-Pacheco E Xu Z Allen E. Initial combination therapy with saxagliptin and metformin improves glycemic control compared with either monotherapy alone in drug-naïve patients with type 2 diabetes. Presented at: 44rd annual meeting of the European Society for the Study of Diabetes; September 7–11, 2008; Rome, Italy. Abstract.

  61. Girgis S Patel CG Li L, et al. Effect of diltiazem on the pharmacokinetics of saxagliptin in healthy subjects. Presented at: 36th Annual Meeting of the American College of Clinical Pharmacology; September 9–11, 2007; San Francisco, CA. Abstract.

  62. Girgis S You X Li L Maurer C Whigan D Boulton DW. Effect of simvastatin on the pharmacokinetics of saxagliptin in healthy subjects. Presented at: 36th Annual Meeting of the American College of Clinical Pharmacology; September 9–11, 2007; San Francisco, CA. Abstract.

  63. Boulton DW Adams D Li L, et al. Maalox Maxr, famotidine or omeprazole do not meaningfully affect the pharmacokinetics of saxagliptin in healthy subjects. Presented at: 2008 American Society for Clinical Pharmacology and Therapeutics Annual Meeting; April 2–5, 2008; Orlando, FL. Abstract.

  64. Boulton DW Li L Patel CG, et al. No pharmacokinetic interaction between saxagliptin and digoxin in healthy subjects. Presented at: 2008 American Society for Clinical Pharmacology and Therapeutics Annual Meeting; April 2–5, 2008; Orlando, FL. Abstract.

  65. Patel CG Boulton DW Brenner E Royzman K Li L. Effect of ketoconazole on the pharmacokinetics of saxagliptin in healthy subjects. Presented at: 36th Annual Meeting of the American College of Clinical Pharmacology; September 9–11, 2007; San Francisco, CA. Abstract.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd A. Tahrani.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s12325-009-0051-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahrani, A.A., Piya, M.K. & Barnett, A.H. Saxagliptin: a new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus. Adv Therapy 26, 249–262 (2009). https://doi.org/10.1007/s12325-009-0014-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-009-0014-9

Keywords

Navigation