Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dyslipidemia in type 2 diabetes mellitus

Abstract

Dyslipidemia is one of the major risk factors for cardiovascular disease in diabetes mellitus. The characteristic features of diabetic dyslipidemia are a high plasma triglyceride concentration, low HDL cholesterol concentration and increased concentration of small dense LDL-cholesterol particles. The lipid changes associated with diabetes mellitus are attributed to increased free fatty acid flux secondary to insulin resistance. The availability of multiple lipid-lowering drugs and supplements provides new opportunities for patients to achieve target lipid levels. However, the variety of therapeutic options poses a challenge in the prioritization of drug therapy. The prevalence of hypercholesterolemia is not increased in patients with diabetes mellitus, but mortality from coronary heart disease increases exponentially as a function of serum cholesterol levels, and lowering of cholesterol with statins reduces diabetic patients' relative cardiovascular risk. Although drug therapy for dyslipidemia must be individualized, most people with diabetes mellitus are candidates for statin therapy, and often need treatment with multiple agents to achieve therapeutic goals.

Key Points

  • Dyslipidemia contributes to the increased risk of cardiovascular disease in diabetes mellitus

  • The characteristic features of diabetic dyslipidemia are high plasma triglyceride concentration, low HDL cholesterol concentration and increased concentration of small dense LDL cholesterol

  • The most likely cause of diabetic dyslipidemia is the increased free fatty-acid flux, secondary to insulin resistance

  • Although drug therapy for dyslipidemias must be individualized, most people with diabetes mellitus are candidates for statin therapy and often need to be treated with multiple agents to achieve therapeutic goals

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of insulin resistance in diabetic dyslipidemia.
Figure 2: A suggested algorithm for drug therapy of dyslipidemia in patients with diabetes mellitus.

Similar content being viewed by others

References

  1. Mooradian AD (2003) Cardiovascular disease in type 2 diabetes mellitus: current management guidelines. Arch Intern Med 163: 33–40

    Article  PubMed  Google Scholar 

  2. Gu K et al. (1999) Diabetes and decline in heart disease mortality in US adults. JAMA 281: 1291–1299

    Article  CAS  PubMed  Google Scholar 

  3. Stamler J et al. (1993) Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16: 434–444

    Article  CAS  PubMed  Google Scholar 

  4. Almdal T et al. (2004) The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 164: 1422–1426

    Article  PubMed  Google Scholar 

  5. Sprafka JM et al. (1991) Trends in prevalence of diabetes mellitus in patients with myocardial infarction and effect of diabetes on survival. The Minnesota Heart Survey. Diabetes Care 14: 537–543

    Article  CAS  PubMed  Google Scholar 

  6. Haffner SM et al. (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in non-diabetic subjects with and without prior history of myocardial infarction. N Engl J Med 339: 229–234

    Article  CAS  PubMed  Google Scholar 

  7. Expert panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285: 2486–2497

  8. Hachem SB and Mooradian AD (2006) Familial dyslipidaemias: an overview of genetics, pathophysiology and management. Drugs 66: 1949–1969

    Article  CAS  PubMed  Google Scholar 

  9. Taskinen MR (2003) Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 46: 733–749

    Article  PubMed  Google Scholar 

  10. Krauss RM and Siri PW (2004) Dyslipidemia in type 2 diabetes. Med Clin North Am 88: 897–909

    Article  CAS  PubMed  Google Scholar 

  11. Del Pilar Solano M and Goldberg RB (2005) Management of diabetic dyslipidemia. Endocrinol Metab Clin North. Am 34: 1–25

    Article  PubMed  Google Scholar 

  12. Chahil TJ and Ginsberg HN (2006) Diabetic dyslipidemia. Endocrinol Metab Clin North Am 35: 491–510

    Article  CAS  PubMed  Google Scholar 

  13. Kannel WB (1985) Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J 110: 1100–1107

    Article  CAS  PubMed  Google Scholar 

  14. [No authors listed] (1997) U.K. Prospective Diabetes Study 27. Plasma lipids and lipoproteins at diagnosis of NIDDM by age and sex. Diabetes Care 20: 1683–1687

  15. Frayn KN (2001) Adipose tissue and the insulin resistance syndrome. Proc Nutr Soc 60: 375–380

    Article  CAS  PubMed  Google Scholar 

  16. Adiels M et al. (2007) Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 50: 2356–2365

    Article  CAS  PubMed  Google Scholar 

  17. Mooradian AD et al. (2007) Low serum high-density lipoprotein cholesterol in obese subjects with normal serum triglycerides: the role of insulin resistance and inflammatory cytokines. Diabetes Obes Metab 9: 441–443

    Article  CAS  PubMed  Google Scholar 

  18. Mooradian AD et al. (2008) Obesity-related changes in high density lipoprotein metabolism. Obesity 16: 1152–1160

    Article  CAS  PubMed  Google Scholar 

  19. Mooradian AD et al. (2004) Transcriptional control of apolipoprotein A-I gene expression in diabetes mellitus. Diabetes 53: 513–520

    Article  CAS  PubMed  Google Scholar 

  20. Beers A et al. (2006) Inhibition of apolipoprotein AI gene expression by tumor necrosis factor α: Roles for MEK/ERK and JNK signaling. Biochemistry 45: 2408–2413

    Article  CAS  PubMed  Google Scholar 

  21. Dullaart RP et al. (2004) Type 2 diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations. Scand J Clin Lab Invest 64: 205–215

    Article  CAS  PubMed  Google Scholar 

  22. Borggreve SE et al. (2003) Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins. Eur J Clin Invest 33: 1051–1069

    Article  CAS  PubMed  Google Scholar 

  23. de Vries R et al. (2005) Plasma cholesteryl ester transfer is a determinant of intima–media thickness in type 2 diabetic and nondiabetic subjects: role of CETP and triglycerides. Diabetes 54: 3554–3559

    Article  CAS  PubMed  Google Scholar 

  24. Vergès B et al. (2006) Adiponectin is an important determinant of ApoA-I catabolism. Arterioscler Thromb Vasc Biol 26: 1364–1369

    Article  PubMed  Google Scholar 

  25. Vergeer M et al. (2008) Evaluation of phospholipid transfer protein as a therapeutic target. Future Lipidology 3: 327–335

    Article  CAS  Google Scholar 

  26. Brunzell JD et al. (2008) Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diabetes Care 31: 811–822

    Article  CAS  PubMed  Google Scholar 

  27. McQueen MJ et al. (2008) Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case–control study. Lancet 372: 224–233

    Article  CAS  PubMed  Google Scholar 

  28. Cholesterol Treatment Trialists' (CTT) Collaborators (2008) Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomized trials of statins: a meta-analysis. Lancet 371: 117–125

  29. Rubins HB et al. (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 341: 410–418

    Article  CAS  PubMed  Google Scholar 

  30. Keech A et al. (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366: 1849–1861

    Article  CAS  PubMed  Google Scholar 

  31. Frick MH et al. (1987) Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317: 1237–1245

    Article  CAS  PubMed  Google Scholar 

  32. Bantle JP et al. (2008) Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 31 (Suppl 1): S61–S78

    CAS  PubMed  Google Scholar 

  33. Haffner SM and American Diabetes Association (2004) Dyslipidemia management in adults with diabetes. Diabetes Care 27 (Suppl 1): S68–S71

    PubMed  Google Scholar 

  34. Taskinen MR (2002) Controlling lipid levels in diabetes. Acta Diabetol 39 (Suppl 2): S29–S34

    Article  PubMed  Google Scholar 

  35. Krauss RM (2005) Dietary and genetic probes of atherogenic dyslipidemia. Arterioscler Thromb Vasc Biol 25: 2265–2272

    Article  CAS  PubMed  Google Scholar 

  36. Mensink RP et al. (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77: 1146–1155

    Article  CAS  PubMed  Google Scholar 

  37. Slyper A et al. (2005) Influence of glycemic load on HDL cholesterol in youth. Am J Clin Nutr 81: 376–379

    Article  CAS  PubMed  Google Scholar 

  38. Meksawan K et al. (2004) Effect of low and high fat diets on nutrient intakes and selected cardiovascular risk factors in sedentary men and women. J Am Coll Nutr 23: 131–140

    Article  PubMed  Google Scholar 

  39. Mooradian AD et al. (2006) The effect of select nutrients on serum high-density lipoprotein cholesterol and apolipoprotein A-I levels. Endocr Rev 27: 2–16

    Article  CAS  PubMed  Google Scholar 

  40. Harris WS et al. (1997) Safety and efficacy of Omacor in severe hypertriglyceridemia. J Cardiovasc Risk 4: 385–391

    Article  CAS  PubMed  Google Scholar 

  41. Lichtenstein AH (2006) Thematic review series: patient-oriented research. Dietary fat, carbohydrate, and protein: effects on plasma lipoprotein patterns. J Lipid Res 47: 1661–1667

    Article  CAS  PubMed  Google Scholar 

  42. Appel LJ et al. (2005) Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 294: 2455–2464

    Article  CAS  PubMed  Google Scholar 

  43. Cheung MC et al. (2001) Antioxidant supplements block the response of HDL to simvastatin-niacin therapy in patients with coronary artery disease and low HDL. Arterioscler Thromb Vasc Biol 21: 1320–1326

    Article  CAS  PubMed  Google Scholar 

  44. Mooradian AD et al. (2006) Ascorbic acid and alpha-tocopherol down-regulate apolipoprotein A-I gene expression in HepG2 and Caco-2 cell lines. Metabolism 55: 159–167

    Article  CAS  PubMed  Google Scholar 

  45. Mooradian AD et al. (2001) Obesity: a rational target for managing diabetes mellitus. Growth Horm IGF Res 11 (Suppl A): S79–S83

    Article  PubMed  Google Scholar 

  46. Williams PT (2004) The relationships of vigorous exercise, alcohol, and adiposity to low and high high-density lipoprotein-cholesterol levels. Metabolism 53: 700–709

    Article  CAS  PubMed  Google Scholar 

  47. Wilund KR et al. (2002) Changes in high-density lipoprotein-cholesterol subfractions with exercise training may be dependent on cholesteryl ester transfer protein (CETP) genotype. Metabolism 51: 774–778

    Article  CAS  PubMed  Google Scholar 

  48. Halverstadt A et al. (2003) High-density lipoprotein-cholesterol, its subfractions, and responses to exercise training are dependent on endothelial lipase genotype. Metabolism 52: 1505–1511

    Article  CAS  PubMed  Google Scholar 

  49. Sigal RJ et al. (2007) Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med 147: 357–369

    Article  PubMed  Google Scholar 

  50. Giannopoulou I et al. (2005) Exercise is required for visceral fat loss in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 90: 1511–1518

    Article  CAS  PubMed  Google Scholar 

  51. Alam S et al. (2004) The effect of a six-month exercise program on very low-density lipoprotein apolipoprotein B secretion in type 2 diabetes. J Clin Endocrinol Metab 89: 688–694

    Article  CAS  PubMed  Google Scholar 

  52. Durrington P (2003) Dyslipidemia. Lancet 362: 717–731

    Article  CAS  PubMed  Google Scholar 

  53. Moon YS and Kashyap ML (2004) Pharmacologic treatment of type 2 diabetic dyslipidemia. Pharmacotherapy 24: 1692–1713

    Article  CAS  PubMed  Google Scholar 

  54. Shepherd J et al. (2005) Nicotinic acid in the management of dyslipidaemia associated with diabetes and metabolic syndrome: a position paper developed by a European Consensus Panel. Curr Med Res Opin 21: 665–682

    Article  CAS  PubMed  Google Scholar 

  55. Roeters van Lennep HW et al. (2008) The efficacy of statin monotherapy uptitration versus switching to ezetimibe/simvastatin: results of the EASEGO study. Curr Med Res Opin 24: 685–694

    Article  CAS  PubMed  Google Scholar 

  56. Constance C et al. (2007) Efficacy of ezetimibe/simvastatin 10/20 and 10/40 mg compared with atorvastatin 20 mg in patients with type 2 diabetes mellitus. Diabetes Obes Metab 9: 575–584

    Article  CAS  PubMed  Google Scholar 

  57. Hildemann SK et al. (2007) Dual cholesterol inhibition with ezetimibe/simvastatin in pre-treated hypercholesterolaemic patients with coronary heart disease or diabetes mellitus: prospective observational cohort studies in clinical practice. Curr Med Res Opin 23: 713–719

    Article  CAS  PubMed  Google Scholar 

  58. El Harchaoui K et al. (2008) Current and future pharmacologic options for the management of patients unable to achieve low-density lipoprotein-cholesterol goals with statins. Am J Cardiovasc Drugs 8: 233–242

    Article  CAS  PubMed  Google Scholar 

  59. Vergeer M and Kastelein JJ (2008) Anacetrapib: new hope for cholesteryl ester transfer protein inhibitors in the treatment of dyslipidemia. Nat Clin Pract Cardiovasc Med 5: 302–303

    Article  CAS  PubMed  Google Scholar 

  60. Kastelein JJ et al. (2008) Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med 358: 1431–1443

    Article  CAS  PubMed  Google Scholar 

  61. Cannon CP et al. Vytorin Efficacy International Trial (IMPROVE-IT) Rationale and design of IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial): comparison of ezetimbe/simvastatin versus simvastatin monotherapy on cardiovascular outcomes in patients with acute coronary syndromes. Am Heart J, in press

  62. May HT et al. (2008) Comparison of effects of simvastatin alone versus fenofibrate alone versus simvastatin plus fenofibrate on lipoprotein subparticle profiles in diabetic patients with mixed dyslipidemia (from the Diabetes and Combined Lipid Therapy Regimen study). Am J Cardiol 101: 486–489

    Article  CAS  PubMed  Google Scholar 

  63. Zhao XQ et al. (2004) Safety and tolerability of simvastatin plus niacin in patients with coronary artery disease and low high-density lipoprotein cholesterol (The HDL Atherosclerosis Treatment Study). Am J Cardiol 93: 307–312

    Article  CAS  PubMed  Google Scholar 

  64. Ballantyne CM et al. (2008) Comparison of the safety and efficacy of a combination tablet of niacin extended release and simvastatin vs simvastatin monotherapy in patients with increased non-HDL cholesterol (from the SEACOAST I study). Am J Cardiol 101: 1428–1436

    Article  CAS  PubMed  Google Scholar 

  65. Karas RH et al. (2008) Long-term safety and efficacy of a combination of niacin extended release and simvastatin in patients with dyslipidemia: the OCEANS study. Am J Cardiovasc Drugs 8: 69–81

    Article  CAS  PubMed  Google Scholar 

  66. Mooradian AD et al. (2002) The role of thiazolidenediones in the treatment of type 2 diabetes. Treatments in Endocrinology 1: 13–20

    Article  PubMed  Google Scholar 

  67. Howard BV et al. (2008) Effect of lower targets for blood pressure and LDL cholesterol on atherosclerosis in diabetes: the SANDS randomized trial. JAMA 299: 1678–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Davidson MH et al. (2005) Results of the National Cholesterol Education (NCEP) Program Evaluation Project Utilizing Novel E-Technology (NEPTUNE) II survey and implications for treatment under the recent NCEP Writing Group recommendations. Am J Cardiol 96: 556–563

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooradian, A. Dyslipidemia in type 2 diabetes mellitus. Nat Rev Endocrinol 5, 150–159 (2009). https://doi.org/10.1038/ncpendmet1066

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet1066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing