Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T12:24:11.639Z Has data issue: false hasContentIssue false

Diet, nutrition and the prevention of type 2 diabetes

Published online by Cambridge University Press:  02 January 2007

NP Steyn*
Affiliation:
Chronic Diseases of Lifestyle Unit, Medical Research Council (MRC), Tygerberg, South Africa
J Mann
Affiliation:
Department of Human Nutrition, University of Otago, Dunedin, New Zealand
PH Bennett
Affiliation:
National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
N Temple
Affiliation:
Centre for Science, Athabasca University, Athabasca, Alberta, Canada
P Zimmet
Affiliation:
International Diabetes Institute, Caulfield South, Australia
J Tuomilehto
Affiliation:
National Public Health Institute, Helsinki, Finland
J Lindström
Affiliation:
National Public Health Institute, Helsinki, Finland
A Louheranta
Affiliation:
Department of Clinical Nutrition, University of Kuopio, Kuopio, Finland
*
*Corresponding author: Email nelia.steyn@mrc.ac.za
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objectives:

The overall objective of this study was to evaluate and provide evidence and recommendations on current published literature about diet and lifestyle in the prevention of type 2 diabetes.

Design:

Epidemiological and experimental studies, focusing on nutritional intervention in the prevention of type 2 diabetes are used to make disease-specific recommendations. Long-term cohort studies are given the most weight as to strength of evidence available.

Setting and subjects:

Numerous clinical trials and cohort studies in low, middle and high income countries are evaluated regarding recommendations for dietary prevention of type 2 diabetes. These include, among others, the Finnish Diabetes Prevention Study, US Diabetes Prevention Program, Da Qing Study; Pima Indian Study; Iowa Women's Health Study; and the study of the US Male Physicians.

Results:

There is convincing evidence for a decreased risk of diabetes in adults who are physically active and maintain a normal body mass index (BMI) throughout adulthood, and in overweight adults with impaired glucose tolerance who lose weight voluntarily. An increased risk for developing type 2 diabetes is associated with overweight and obesity; abdominal obesity; physical inactivity; and maternal diabetes. It is probable that a high intake of saturated fats and intrauterine growth retardation also contribute to an increased risk, while non-starch polysaccharides are likely to be associated with a decreased risk. From existing evidence it is also possible that omega-3 fatty acids, low glycaemic index foods and exclusive breastfeeding may play a protective role, and that total fat intake and trans fatty acids may contribute to the risk. However, insufficient evidence is currently available to provide convincing proof.

Conclusions:

Based on the strength of available evidence regarding diet and lifestyle in the prevention of type 2 diabetes, it is recommended that a normal weight status in the lower BMI range (BMI 21–23) and regular physical activity be maintained throughout adulthood; abdominal obesity be prevented; and saturated fat intake be less than 7% of the total energy intake.

Type
Research Article
Copyright
Copyright © CAB International 2004

References

1King, H, Aubert, RE, Herman, WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21: 1414–31.CrossRefGoogle ScholarPubMed
2Amos, AF, McCarty, DJ, Zimmet, P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Medicine 1997; 14: S7–85.3.0.CO;2-R>CrossRefGoogle Scholar
3Bennett, PH. Type 2 diabetes among the Pima Indians of Arizona: an epidemic attributable to environmental change. Nutrition Reviews 1999; 57: S51–4.CrossRefGoogle ScholarPubMed
4Lako, JV, Nguyen, VC. Dietary patterns and risk factors of diabetes mellitus among urban indigenous women in Fiji. Asia Pacific Journal of Clinical Nutrition 2001; 10: 188–93.CrossRefGoogle ScholarPubMed
5Hetzel, B, Michael, T. The Lifestyle Factor: Lifestyle and Health. Melbourne: Penguin, 1987.Google Scholar
6WHO Study Group. Diabetes Mellitus—Technical Report Series 727. Geneva: World Health Organization, 1985.Google Scholar
7Gavin, JR 3rd, Alberti, KGMM, Davidson, MB, et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997; 20: 1183–97.Google Scholar
8WHO Consultation Group. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Geneva: World Health Organisation, 1999.Google Scholar
9Harris, MI, Eastman, RC, Cowie, CC, Flegal, KM, Eberhardt, MS. Comparison of diabetes diagnostic categories in the US population according to the 1997 American Diabetes Association and 1980–1985 World Health Organization diagnostic criteria. Diabetes Care 1997; 20: 1859–62.CrossRefGoogle Scholar
10Bennett, PH. Impact of the new WHO classification and diagnostic criteria. Diabetes Obesity & Metabolism 1999; 1(Suppl. 2): S1–6.CrossRefGoogle ScholarPubMed
11King, H, Rewers, M. Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. WHO Ad Hoc Diabetes Reporting Group. Diabetes Care 1993; 16: 157–77.CrossRefGoogle ScholarPubMed
12Harris, MI, Flegal, KM, Cowie, CC, Eberhardt, MS, Goldstein, DE, Little, RR, Wiedmeyer, HM, Byrd-Holt, DD. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in US adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 1998; 21: 518–24.CrossRefGoogle ScholarPubMed
13Harris, MI, Hadden, WC, Knowler, WC, Bennett, PH. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in US population aged 20–74 yr. Diabetes 1987; 36: 523–34.CrossRefGoogle ScholarPubMed
14Harris, MI. Noninsulin-dependent diabetes mellitus in black and white Americans. Diabetes-Metabolism Reviews 1990; 6: 71–90.CrossRefGoogle ScholarPubMed
15Flegal, KM, Ezzati, TM, Harris, MI, Haynes, SG, Juarez, RZ, Knowler, WC, Perez-Stable, EJ, Stern, MP. Prevalence of diabetes in Mexican Americans, Cubans, and Puerto Ricans from the Hispanic Health and Nutrition Examination Survey, 1982–1984. Diabetes Care 1991; 14: 628–38.CrossRefGoogle ScholarPubMed
16Gohdes, D. Diabetes in North American Indians and Alaska natives. In: Harris, MI, Cowie, CC, Stern, MP, eds. Diabetes in America. Washington, USA. National Institutes of Health, 1995.Google Scholar
17Knowler, WC, Pettitt, DJ, Saad, MF, Bennett, PH. Diabetes Mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes-Metabolism Reviews 1990; 6: 127.CrossRefGoogle ScholarPubMed
18Mokdad, AH, Bowman, BA, Engelgau, MM, Vinicor, F. Diabetes trends among American Indians and Alaska natives: 1990–1998. Diabetes Care 2001; 24: 1508–9.CrossRefGoogle ScholarPubMed
19Mokdad, AH, Bowman, BA, Ford, ES, Vinicor, F, Marks, JS, Koplan, JP. The continuing epidemics of obesity and diabetes in the United States. Journal of the American Medical Association 2001; 286: 1195–200.CrossRefGoogle ScholarPubMed
20Teuscher, T, Baillod, P, Rosman, JB, Teuscher, A. Absence of diabetes in a rural West African population with a high carbohydrate/cassava diet. Lancet 1987; i: 765–8.CrossRefGoogle Scholar
21Walker, ARP. Prevalence of diabetes mellitus. Lancet 1966; i: 1163.CrossRefGoogle Scholar
22Cosnett, JE. Illness among Natal Indians: a survey of hospital admissions. South African Medical Journal 1957; 31: 1109–15.Google ScholarPubMed
23Omar, MAK, Seedat, MA, Motala, AA, Dyer, RB, Becker, P. The prevalence of diabetes mellitus and impaired glucose tolerance in a group of urban South African blacks. South African Medical Journal 1993; 83: 641–3.Google Scholar
24Knowler, WC, Bennett, PH, Hamman, RF, Miller, M. Diabetes incidence and prevalence in Pima Indians: a 19-fold greater incidence than in Rochester, Minnesota. American Journal of Epidemiology 1978; 108: 497505.CrossRefGoogle ScholarPubMed
25Knowler, WC, Pettitt, DJ, Savage, PJ, Bennett, PH. Diabetes incidence in Pima Indians: contributions of obesity and parental diabetes. American Journal of Epidemiology 1981; 113: 144–56.CrossRefGoogle ScholarPubMed
26Dowse, GK, Zimmet, PZ, Finch, CF, Collins, VR. Decline in incidence of epidemic glucose intolerance in Nauruans: implications for the “thrifty genotype”. American Journal of Epidemiology 1991; 133: 1093–104.CrossRefGoogle ScholarPubMed
27Bennett, PH, Knowler, WC. Increasing prevalence of diabetes in the Pima (American) Indians over a ten-year period. In: Waldhausl, WK, ed. Diabetes 1979. Amsterdam: Excerpta Medica, 1979.Google Scholar
28Kleinman, JC, Donahue, RP, Harris, MI, Finucane, FF, Madans, JH, Brock, DB. Mortality among diabetics in a national sample. American Journal of Epidemiology 1988; 128: 389401.CrossRefGoogle ScholarPubMed
29Gu, K, Cowie, CC, Harris, MI. Mortality in adults with and without diabetes in a national cohort of the US population, 1971–1993. Diabetes Care 1998; 21: 1138–45.CrossRefGoogle Scholar
30Roper, NA, Bilous, RW, Kelly, WF, Unwin, NC, Connolly, VM. Excess mortality in a population with diabetes and the impact of material deprivation: longitudinal, population based study. British Medical Journal 2001; 322: 1389–93.CrossRefGoogle Scholar
31Morrish, NJ, Wang, SL, Stevens, LK, Fuller, JH, Keen, H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia 2001; 44: S14–21.CrossRefGoogle ScholarPubMed
32Sievers, ML, Nelson, RG, Knowler, WC, Bennett, PH. Impact of NIDDM on mortality and causes of death in Pima Indians. Diabetes Care 1992; 15: 1541–9.CrossRefGoogle ScholarPubMed
33McLarty, DG, Kinabo, L, Swai, AB. Diabetes in tropical Africa: a prospective study, 1981–7. II. Course and prognosis. British Medical Journal 1990; 300: 1107–10.CrossRefGoogle Scholar
34Bale, GS, Entmacher, PS. Estimated life expectancy of diabetics. Diabetes 1977; 26: 434–8.CrossRefGoogle ScholarPubMed
35Barrett-Connor, E, Wingard, DL. Sex differential in ischemic heart disease mortality in diabetics: a prospective population-based study. American Journal of Epidemiology 1983; 118: 489–96.CrossRefGoogle ScholarPubMed
36Hu, FB, Stampfer, MJ, Solomon, CG, Liu, S, Willett, WC, Speizer, FE, Nathan, DM, Manson, JE. The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Archives of Internal Medicine 2001; 161: 1717–23.CrossRefGoogle ScholarPubMed
37Stamler, J, Vaccaro, O, Neaton, JD, Wentworth, D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care 1993; 16: 434–44.CrossRefGoogle ScholarPubMed
38Saad, MF, Knowler, WC, Pettitt, DJ, Nelson, RG, Charles, MA, Bennett, PH. A two-step model for development of non-insulin-dependent diabetes. American Journal of Medicine 1991; 90: 229–35.CrossRefGoogle ScholarPubMed
39Saad, MF, Knowler, WC, Pettitt, DJ, Nelson, RG, Mott, DM, Bennett, PH. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet 1989; i: 1356–9.CrossRefGoogle Scholar
40Shaw, JE, Zimmet, PZ, de Courten, M, Dowse, GK, Chitson, P, Gareeboo, H, Hemraj, F, Fareed, D, Tuomilehto, J, Alberti, KG. Impaired fasting glucose or impaired glucose tolerance. What best predicts future diabetes in Mauritius? Diabetes Care 1999; 22: 399402.CrossRefGoogle ScholarPubMed
41Gabir, MM, Hanson, RL, Dabelea, D, Imperatore, G, Roumain, J, Bennett, PH, Knowler, WC. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care 2000; 23: 1108–12.CrossRefGoogle ScholarPubMed
42De Vegt, F, Dekker, JM, Jager, A, Hienkens, E, Kostense, PJ, Stehouwer, CD, Nijpels, G, Bouter, LM, Heine, RJ. Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: the Hoorn Study. Journal of the American Medical Association 2001; 285: 2109–13.CrossRefGoogle Scholar
43Saad, MF, Knowler, WC, Pettitt, DJ, Nelson, RG, Mott, DM, Bennett, PH. The natural history of impaired glucose tolerance in the Pima Indians. New England Journal of Medicine 1988; 319: 1500–6.CrossRefGoogle ScholarPubMed
44Edelstein, SL, Knowler, WC, Bain, RP, Andres, R, Barrett-Connor, EL, Dowse, GK, Haffner, SM, Pettitt, DJ, Sorkin, JD, Muller, DC, Collins, VR, Hamman, RF. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes 1997; 46: 701–10.CrossRefGoogle ScholarPubMed
45Weyer, C, Bogardus, C, Mott, DM, Pratley, RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Journal of Clinical Investigation 1999; 104: 787–94.CrossRefGoogle ScholarPubMed
46Eschwege, E, Charles, MA, Simon, D, Thibult, N, Balkau, B. From policemen to policies: what is the future for 2-h glucose?: The Kelly West Lecture, 2000. Diabetes Care 2001; 24: 1945–50.CrossRefGoogle Scholar
47Balkau, B. The DECODE study. Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe. Diabetes & Metabolism 2000; 26: 282–6.Google ScholarPubMed
48Gabir, MM, Hanson, RL, Dabelea, D, Imperatore, G, Roumain, J, Bennett, PH, Knowler, WC. Plasma glucose and prediction of microvascular disease and mortality: evaluation of 1997 American Diabetes Association and 1999 World Health Organization criteria for diagnosis of diabetes. Diabetes Care 2000; 23: 1113–8.CrossRefGoogle ScholarPubMed
49Shaw, JE, Hodge, AM, de Courten, M, Chitson, P, Zimmet, PZ. Isolated post-challenge hyperglycaemia confirmed as a risk factor for mortality. Diabetologia 1999; 42: 1050–4.CrossRefGoogle ScholarPubMed
50Davies, MJ, Raymond, NT, Day, JL, Hales, CN, Burden, AC. Impaired glucose tolerance and fasting hyperglycaemia have different characteristics. Diabetic Medicine 2000; 17: 433–40.CrossRefGoogle ScholarPubMed
51Tan, CE, Emmanuel, SC, Tan, BY, Jacob, E. Prevalence of diabetes and ethnic differences in cardiovascular risk factors. The 1992 Singapore National Health Survey. Diabetes Care 1999; 22: 241–7.CrossRefGoogle ScholarPubMed
52Mather, HM, Chaturvedi, N, Fuller, JH. Mortality and morbidity from diabetes in South Asians and Europeans: 11-year follow-up of the Southall Diabetes Survey, London, UK. Diabetic Medicine 1998; 15: 53–9.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
53Zimmet, P, Taylor, R, Ram, P, King, H, Sloman, G, Raper, LR, Hunt, D. Prevalence of diabetes and impaired glucose tolerance in the biracial (Melanesian and Indian) population of Fiji: a rural-urban comparison. American Journal of Epidemiology 1983; 118: 673–88.CrossRefGoogle ScholarPubMed
54Omar, MA, Seedat, MA, Dyer, RB, Motala, AA, Knight, LT, Becker, PJ. South African Indians show a high prevalence of NIDDM and bimodality in plasma glucose distribution patterns. Diabetes Care 1994; 17: 70–3.CrossRefGoogle ScholarPubMed
55Prior, IA, Davidson, F. The epidemiology of diabetes in Polynesians and Europeans in New Zealand and the Pacific. New Zealand Medical Journal 1966; 65: 375–83.Google ScholarPubMed
56Simmons, D. The epidemiology of diabetes and its complications in New Zealand. Diabetic Medicine 1996; 13: 371–5.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
57Everhart, JE, Knowler, WC, Bennett, PH. Incidence and risk factors for noninsulin-dependent diabetes. In: Harris, MI, Hamman, RF, eds. Diabetes in America, Diabetes Data Compiled 1984. 1985 NIH Publication No. 85–1468.Google Scholar
58Barnett, AH, Eff, C, Leslie, RD, Pyke, DA. Diabetes in identical twins. A study of 200 pairs. Diabetologia 1981; 20: 8793.Google ScholarPubMed
59Newman, B, Selby, JV, King, MC, Slemenda, C, Fabsitz, R, Friedman, GD. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia 1987; 30: 763–8.CrossRefGoogle ScholarPubMed
60Serjeantson, SW, Owerbach, D, Zimmet, P, Nerup, J, Thoma, K. Genetics of diabetes in Nauru: effects of foreign admixture, HLA antigens and the insulin-gene-linked polymorphism. Diabetologia 1983; 25: 13–7.CrossRefGoogle ScholarPubMed
61Knowler, WC, Williams, RC, Pettitt, DJ, Steinberg, AG. Gm3;5,13,14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. American Journal of Human Genetics 1988; 43: 520–6.Google Scholar
62Gardner, LI Jr, Stern, MP, Haffner, SM, Gaskill, SP, Hazuda, HP, Relethford, JH, Eifler, CW. Prevalence of diabetes in Mexican Americans. Relationship to percent of gene pool derived from native American sources. Diabetes 1984; 33: 8692.CrossRefGoogle ScholarPubMed
63Kenny, SJ, Aubert, RE, Geiss, LS. Prevalence and incidence of non-insulin-dependent diabetes. In: Harris, MI, Cowie, CC, Stern, MP, eds. Diabetes in America. Washington, USA. National Institutes of Health, 1995.Google Scholar
64Dabelea, D, Hanson, RL, Bennett, PH, Roumain, J, Knowler, WC, Pettitt, DJ. Increasing prevalence of Type II diabetes in American Indian children. Diabetologia 1998; 41: 904–10.CrossRefGoogle ScholarPubMed
65Fagot-Campagna, A, Pettitt, DJ, Engelgau, MM, Burrows, NR, Geiss, LS, Valdez, R, Beckles, GL, Saaddine, J, Gregg, EW, Williamson, DF, Narayan, KM. Type 2 diabetes among North American children and adolescents: an epidemiologic review and a public health perspective. Journal of Pediatrics 2000; 136: 664–72.CrossRefGoogle Scholar
66Dean, HJ, Mundy, RL, Moffatt, M. Non-insulin-dependent diabetes mellitus in Indian children in Manitoba. Canadian Medical Association Journal 1992; 147: 52–7.Google ScholarPubMed
67Kitagawa, T, Owada, M, Urakami, T, Yamauchi, K. Increased incidence of non-insulin dependent diabetes mellitus among Japanese schoolchildren correlates with an increased intake of animal protein and fat. Clinical Pediatrics (Philadelphia) 1998; 37: 111–5.CrossRefGoogle ScholarPubMed
68Savage, PJ, Bennett, PH, Senter, RG, Miller, M. High prevalence of diabetes in young Pima Indians: evidence of phenotypic variation in a genetically isolated population. Diabetes 1979; 28: 937–42.CrossRefGoogle Scholar
69Colditz, GA, Willett, WC, Stampfer, MJ, Manson, JE, Hennekens, CH, Arky, RA, Speizer, FE. Weight as a risk factor for clinical diabetes in women. American Journal of Epidemiology 1990; 132: 501–13.CrossRefGoogle ScholarPubMed
70Kuczmarski, RJ, Flegal, KM, Campbell, SM, Johnson, CL. Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys, 1960 to 1991. Journal of the American Medical Association 1994; 273: 205–11.CrossRefGoogle Scholar
71Shah, M, Hannan, PJ, Jeffery, RW. Secular trend in body mass index in the adult population of three communities from the upper mid-western part of the USA: the Minnesota Heart Health Program. International Journal of Obesity 1991; 15: 499503.Google ScholarPubMed
72Federation of American Societies for Experimental Biology Life Sciences Research Office. Third Report on Nutrition Monitoring in the United States. Washington, DC: US Government Printing Office, 1995.Google Scholar
73Bouchard, C, Tremblay, A, Despres, JP, Nadeau, A, Lupien, PJ, Theriault, G, Dussault, J, Moorjani, S, Pinault, S, Fournier, G. The response to long-term overfeeding in identical twins. New England Journal of Medicine 1990; 322: 1477–82.CrossRefGoogle ScholarPubMed
74Preparation and Use of Food-based Dietary Guidelines. Report of a Joint FAO/WHO Consultation. WHO Technical Report Series No. 880. Geneva: World Health Organization, 1998.Google Scholar
75Schoeller, DA. The importance of clinical research: the role of thermogenesis in human obesity. American Journal of Clinical Nutrition 2001; 73: 511–6.CrossRefGoogle ScholarPubMed
76Grundy, SM. Multifactorial causation of obesity: implications for prevention. American Journal of Clinical Nutrition 1998; 67(Suppl.): 563S–72S.CrossRefGoogle ScholarPubMed
77Ravussin, E, Swinburn, BA. Pathophysiology of obesity. Lancet 1992; 340: 404–8.CrossRefGoogle ScholarPubMed
78National Institutes of Health. The Lipid Research Clinics Population Studies Data Book: The Prevalence Study. (Publication no. 79–1527) Bethesda, MD: NIH, 1979.Google Scholar
79Flatt, JP. Importance of nutrient balance in body weight regulation. Diabetes-Metabolism Reviews 1988; 4: 571–81.CrossRefGoogle ScholarPubMed
80Shah, M, Garg, A. High-fat and high-carbohydrate diets and energy balance. Diabetes Care 1996; 19: 1142–52.CrossRefGoogle ScholarPubMed
81Sclafani, A. Dietary obesity models. In: Bjorntorp, P, Brodoff, BN. eds. Obesity. Philadelphia, PA: JB Lippincott, 1992, 241–8.Google Scholar
82 Anonymous. From the Centers for Disease Control and Prevention: daily dietary fat and total food energy intakes: NHANES III, Phase 1, 1988–91. Journal of the American Medical Association 1994; 271: 1309.CrossRefGoogle Scholar
83Swinburn, B, Metcalf, P, Lezotte, DC. Long-term (5-year) effects of a reduced fat diet in individuals with glucose intolerance. Diabetes Care 2001; 24: 619–24.CrossRefGoogle ScholarPubMed
84Astrup, A, Greenwald, G, Melanson, E, Saris, WH, Hill, J. The role of low-fat diets in body weight control:a meta-analysis of ad libitum dietary intervention studies. International Journal of Obesity 2000; 24: 1545–52.CrossRefGoogle ScholarPubMed
85Chan, JM, Rimm, EB, Colditz, GA, Stampfer, MJ, Willett, WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 1994; 17: 961–9.CrossRefGoogle ScholarPubMed
86Boyko, EJ, Fujimoto, WY, Leonetti, DL, Newell-Morris, L. Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care 2000; 23: 465–71.CrossRefGoogle ScholarPubMed
87Despres, JP. Health consequences of visceral obesity. Annals of Medicine 2001; 33: 534–41.CrossRefGoogle ScholarPubMed
88James, WPT, Leach, R, Kalamara, E, Shayeghi, M. The worldwide obesity epidemic. Obesity Research 2001; 9: 228S–33S.CrossRefGoogle ScholarPubMed
89Manson, JE, Rimm, EB, Stampfer, MJ, Colditz, GA, Willett, WC, Krolewski, AS, Rosner, B, Hennekens, CH, Speizer, FE. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet 1991; 338: 774–8.CrossRefGoogle ScholarPubMed
90Manson, JE, Nathan, DM, Krolewski, AS, Stampfer, MJ, Willett, WC, Hennekens, CH. A prospective study of exercise and incidence of diabetes among US male physicians. Journal of the American Medical Association 1992; 268: 63–7.CrossRefGoogle ScholarPubMed
91Kriska, AM, LaPorte, RE, Pettitt, DJ, Charles, MA, Nelson, RG, Kuller, LH, Bennett, PH, Knowler, WC. The association of physical activity with obesity, fat distribution and glucose intolerance in Pima Indians. Diabetologia 1993; 36: 863–9.CrossRefGoogle ScholarPubMed
92Helmrich, SP, Ragland, DR, Leung, RW, Paffenbarger, RS Jr. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. New England Journal of Medicine 1991; 325: 147–52.CrossRefGoogle ScholarPubMed
93McAuley, KA, Williams, SM, Mann, JI, Goulding, A, Chisholm, A, Wilson, N, Story, G, McLay, RT, Harper, MJ, Jones, IE. Intensive lifestyle changes are necessary to improve insulin sensitivity: a randomized controlled trial. Diabetes Care 2002; 25: 445–52.CrossRefGoogle ScholarPubMed
94Storlien, LH, Baur, LA, Kriketos, AD, Pan, DA, Cooney, GJ, Jenkins, AB, Calvert, GD, Campbell, LV. Dietary fats and insulin action. Diabetologia 1996; 39: 621–31.CrossRefGoogle ScholarPubMed
95Lichtenstein, AH, Schwab, US. Relationship of dietary fat to glucose metabolism. Atherosclerosis 2000; 150: 227–43.CrossRefGoogle ScholarPubMed
96Hu, FB, van Dam, RM, Liu, S. Diet and risk of type II diabetes: the role of types of fat and carbohydrate. Diabetologia 2001; 44: 805–17.CrossRefGoogle ScholarPubMed
97Nagy, K, Levy, J, Grunberger, G. High-fat feeding induces tissue-specific alteration in proportion of activated insulin receptors in rats. Acta Endocrinologica Copenhagen 1990; 122: 361–8.Google ScholarPubMed
98Grundleger, ML, Thenen, SW. Decreased insulin binding, glucose transport, and glucose metabolism in soleus muscle of rats fed a high fat diet. Diabetes 1982; 31: 232–7.CrossRefGoogle ScholarPubMed
99Hedeskov, CJ, Capito, K, Islin, H, Hansen, SE, Thams, P. Long-term fat-feeding-induced insulin resistance in normal NMRI mice: postreceptor changes of liver, muscle and adipose tissue metabolism resembling those of type 2 diabetes. Acta Diabetologica 1992; 29: 14–9.CrossRefGoogle ScholarPubMed
100Storlien, LH, Jenkins, AB, Chisholm, DJ, Pascoe, WS, Khouri, S, Kraegen, EW. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3: fatty acids in muscle phospholipid. Diabetes 1991; 40: 280–9.CrossRefGoogle ScholarPubMed
101Pan, DA, Lillioja, S, Kriketos, AD, Milner, MR, Baur, LA, Bogardus, C, Jenkins, AB, Storlien, LH. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997; 46: 983–8.CrossRefGoogle ScholarPubMed
102Storlien, LH, James, DE, Burleigh, KM, Chisholm, DJ, Kraegen, EW. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. American Journal of Physiolgy 1986; 251: E576–83.Google ScholarPubMed
103Storlien, LH, Kraegen, EW, Chisholm, DJ, Ford, GL, Bruce, DG, Pascoe, WS. Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 1987; 237: 885–8.CrossRefGoogle ScholarPubMed
104Marshall, JA, Hamman, RF, Baxter, J. High-fat, low-carbohydrate diet and the aetiology of non-insulin-dependent diabetes mellitus: the San Luis Valley Diabetes Study. American Journal of Epidemiology 1991; 134: 590603.CrossRefGoogle ScholarPubMed
105Moses, RG, Shand, JL, Tapsell, LC. The recurrence of gestational diabetes: could dietary differences in fat intake be an explanation? Diabetes Care 1997; 20: 1647–50.CrossRefGoogle ScholarPubMed
106Feskens, EJM, Virtanen, SM, Räsänen, L, Tuomilehto, J, Stengård, J, Pekkanen, J, Nissinen, A, Kromhout, D. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 1995; 18: 1104–12.CrossRefGoogle ScholarPubMed
107Marshall, JA, Hoag, S, Shetterly, S, Hamman, RF. Dietary fat predicts conversion from impaired glucose tolerance to NIDDM. The San Luis Valley Diabetes Study. Diabetes Care 1994; 17: 50–6.CrossRefGoogle ScholarPubMed
108Marshall, JA, Bessesen, DH, Hamman, RF. High saturated fat and low starch and fibre are associated with hyperinsuli-nemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia 1997; 40: 430–8.CrossRefGoogle Scholar
109Mayer, EJ, Newman, B, Quesenberry, CP, Selby, JV. Usual dietary fat intake and insulin concentrations in healthy women twins. Diabetes Care 1993; 16: 1459–69.CrossRefGoogle ScholarPubMed
110Lovejoy, J, DiGirolamo, M. Habitual dietary intake and insulin sensitivity in lean and obese adults. American Journal of Clinical Nutrition 1992; 55: 1174–9.CrossRefGoogle ScholarPubMed
111Bennett, P, Knowler, W, Baird, H, Butler, W, Pettitt, D, Reid, J. Diet and development of non-insulin-dependent diabetes mellitus: an epidemiological perspective. In: Pozza, B, ed. Diet, Diabetes and Atherosclerosis. New York: Raven Press, 1984, 109–19.Google Scholar
112Lundgren, H, Bengtsson, C, Blohme, G, Isaksson, B, Lapidus, L, Lenner, RA, Saaek, A, Winther, E. Dietary habits and incidence on noninsulin-dependent diabetes mellitus in a population study of women in Gothenburg, Sweden. American Journal of Clinical Nutrition 1989; 49: 708–12.CrossRefGoogle Scholar
113Feskens, EJ, Kromhout, D. Cardiovascular risk factors and the 25-year incidence of diabetes mellitus in middle-aged men. The Zutphen Study. American Journal of Epidemiology 1989; 130: 1101–8.CrossRefGoogle ScholarPubMed
114Feskens, EJ, Bowles, CH, Kromhout, D. Inverse association between fish intake and risk of glucose intolerance in normoglycemic elderly men and women. Diabetes Care 1991; 14: 935–41.CrossRefGoogle ScholarPubMed
115Colditz, GA, Manson, JE, Stampfer, MJ, Rosner, B, Willett, WC, Speizer, FE. Diet and risk of clinical diabetes in women. American Journal of Clinical Nutrition 1992; 55: 1018–23.CrossRefGoogle ScholarPubMed
116Salmeron, J, Manson, JE. Stampfer, MJ, Colditz, GA, Wing, AL, Willett, WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. Journal of the American Medical Association 1997; 277: 472–7.CrossRefGoogle ScholarPubMed
117Salmeron, J, Ascherio, A, Rimm, EB, Colditz, GA, Spiegelman, D, Jenkins, DJ, Stampfer, MJ, Wing, AL, Willett, WC. Dietary fiber, glycemic load and risk of NIDDM in men. Diabetes Care 1997; 20: 545–50.CrossRefGoogle ScholarPubMed
118Salmeron, J, Hu, FB, Manson, JE, Stampfer, MJ, Colditz, GA, Rimm, EB, Willett, WC. Dietary fat intake and risk of type 2 diabetes in women. American Journal of Clinical Nutrition 2001; 73: 1019–26.CrossRefGoogle ScholarPubMed
119Meyer, KA, Kushi, LH, Jacobs, DR, Folsom, AR. Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care 2001; 24: 1528–35.CrossRefGoogle ScholarPubMed
120Kolterman, OG, Greenfield, M, Reaven, GM, Saekow, M, Olefsky, JM. Effect of a high carbohydrate diet on insulin binding to adipocytes and on insulin action in vivo in man. Diabetes 1979; 28: 731–6.CrossRefGoogle ScholarPubMed
121Beck-Nielsen, H, Pedersen, O, Sorensen, N. Effects of diet on the cellular insulin binding and the insulin sensitivity in young healthy subjects. Diabetologia 1978; 15: 289–96.CrossRefGoogle ScholarPubMed
122Borkman, M, Campbell, LV, Chisholm, DJ, Storlien, LH. Comparison of the effects on insulin sensitivity of high carbohydrate and high fat diets in normal subjects. Journal of Clinical Endocrinology & Metabolism 1991; 72: 432–7.CrossRefGoogle ScholarPubMed
123Hjollund, E, Pedersen, O, Richelsen, B, Beck-Nielsen, H, Sorensen, NS. Increased insulin binding to adipocytes and monocytes and increased insulin sensitivity of glucose transport and metabolism in adipocytes from non-insulin-dependent diabetics after a low-fat/high-starch/high-fiber diet. Metabolism 1983; 32: 1067–75.CrossRefGoogle ScholarPubMed
124Chen, M, Bergman, RN, Porte, D. Insulin resistance and beta-cell dysfunction in aging: the importance of dietary carbohydrate. Journal of Clinical Endocrinology & Metabolism 1988; 67: 951–7.CrossRefGoogle ScholarPubMed
125Swinburn, BA, Boyce, VL, Bergman, RN, Howard, BV, Bogardus, C. Deterioration in carbohydrate metabolism and lipoprotein changes induced by modern, high fat diet in Pima Indians and Caucasians. Journal of Clinical Endocrinology & Metabolism 1991; 73: 156–65.CrossRefGoogle ScholarPubMed
126Lovejoy, JC, Windhauser, MM, Rood, JC, de la Bretonne, JA. Effect of a controlled high-fat versus low-fat diet on insulin sensitivity and leptin levels in African-American and Caucasian women. Metabolism 1998; 47: 1520–4.CrossRefGoogle ScholarPubMed
127Bisschop, PH, de Metz, J, Ackermans, MT, Endert, E, Pijl, H, Kuipers, F, Meijer, AJ, Sauerwein, HP, Romijn, JA. Dietary fat content alters insulin-mediated glucose metabolism in healthy men. American Journal of Clinical Nutrition 2001; 73: 554–9.CrossRefGoogle ScholarPubMed
128Bo, S, Menato, G, Lezo, A, Signorile, A, Bardelli, C, De Michieli, F, Massobrio, M, Pagano, G. Dietary fat and gestational hyperglycemia. Diabetologia 2001; 44: 972–8.CrossRefGoogle Scholar
129Feskens, EJ, Kromhout, D. Habitual dietary intake and glucose tolerance in euglycaemic men: the Zutphen study. International Journal of Epidemiology 1990; 19: 953–9.CrossRefGoogle ScholarPubMed
130Trevisan, M, Krogh, V, Freudenheim, J, Blake, A, Muti, P, Panico, S, Farinaro, E, Mancini, M, Menotti, A, Ricci, G. Consumption of olive oil, butter and vegetable oils and coronary heart disease risk factors. The Research Group ATS-RF2 of the Italian National Research Council. Journal of the American Medical Association 1990; 263: 688–92.CrossRefGoogle Scholar
131Parker, DR, Weiss, ST, Troisi, R, Cassano, PA, Vokonas, PS, Landsberg, L. Relationship of dietary saturated fatty acids and body habitus to serum insulin concentrations: the Normative Aging study. American Journal of Clinical Nutrition 1993; 58: 129–36.CrossRefGoogle ScholarPubMed
132Folsom, AR, Ma, J, McGovern, PG, Eckfeldt, H. Relation between plasma phospholipid saturated fatty acids and hyperinsulinemia. Metabolism 1996; 45: 223–8.CrossRefGoogle ScholarPubMed
133Vessby, B, Tengblad, S, Lithell, H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia 1994; 37: 1044–50.CrossRefGoogle Scholar
134Vessby, B, Aro, A, Skarfors, E, Berglund, L, Salminen, I, Lithell, H. The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Diabetes 1994; 43: 1353–7.CrossRefGoogle Scholar
135Mooy, JM, Grootenhuis, PA, de Vries, H, Valkenburg, HA, Bouter, LM, Kostense, PJ, Heine, RJ. Prevalence and determinants of glucose intolerance in a Dutch caucasian population. The Hoorn study. Diabetes Care 1995; 18: 1270–3.CrossRefGoogle Scholar
136Borkman, M, Storlien, LH, Pan, DA, Jenkins, AB, Chisholm, DJ, Campbell, LV. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. New England Journal of Medicine 1993; 328: 238–44.CrossRefGoogle ScholarPubMed
137Pan, DA, Lillioja, S, Milner, MR, Kriketos, AD, Baur, LA, Bogardus, C, Storlien, LH. Skeletal muscle membrane lipid composition is related to adiposity and insulin action. Journal of Clinical Investigation 1995; 96: 2802–8.CrossRefGoogle ScholarPubMed
138Maron, DJ, Fair, JM, Haskell, WL. Saturated fat intake and insulin resistance in men with coronary artery disease. The stanford coronary risk intervention project investigators and staff. Circulation 1991; 84: 2020–7.CrossRefGoogle ScholarPubMed
139Uusitupa, M, Schwab, U, Mäkimattila, S, Karhapää, P, Sarkkinen, E, Maliranta, H, Ågren, J, Penttilä, I. Effects of two high-fat diets with different fatty acid compositions on glucose and lipid metabolism in healthy young women. American Journal of Clinical Nutrition 1994; 59: 1310–6.CrossRefGoogle ScholarPubMed
140Vessby, B, Gustafsson, I-B, Boberg, J, Karlström, B, Lithell, H, Werner, I. Substituting polyunsaturated for saturated fat as a single change in a Swedish diet: effects on serum lipoprotein metabolism and glucose tolerance in patients with hyperlipoproteinaemia. European Journal of Clinical Investigation 1980; 10: 193202.CrossRefGoogle Scholar
141Vessby, B, Uusitupa, M, Hermansen, K, Riccardi, G, Rivellese, AA, Tapsell, LC, Nälsen, C, Berglund, L, Louheranta, A, Rasmussen, BM, Calvert, GD, Maffettone, A, Pedersen, E, Gustafsson, I-B, Storlien, LH. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia 2001; 44: 312–9.CrossRefGoogle ScholarPubMed
142Schwab, US, Niskanen, LK, Maliranta, HM, Savolainen, MJ, Kesäniemi, YA, Uusitupa, MIJ. Lauric and palmitic acid-enriched diets have minimal impact on serum lipid and lipoprotein concentrations and glucose metabolism in healthy young women. Journal of Nutrition 1995; 125: 466–73.Google ScholarPubMed
143Louheranta, AM, Turpeinen, AK, Schwab, US, Vidgren, HM, Parviainen, MT, Uusitupa, MIJ. A high-stearic acid diet does not impair glucose tolerance and insulin sensitivity in healthy women. Metabolism 1998; 47: 529–34.CrossRefGoogle Scholar
144Alstrup, KK, Gregersen, S, Jensen, HM, Thomsen, JL, Hermansen, K. Differential effects of cis and trans fatty acids on insulin release from isolated mouse islets. Metabolism 1999; 48: 22–9.Google ScholarPubMed
145Christiansen, E, Schnider, S, Palmvig, B, Tauber-Lassen, E, Pedersen, O. Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids. Effects of postprandial insulinemia and glycemia in obese patients with NIDDM. Diabetes Care 1997; 20: 881–7.CrossRefGoogle ScholarPubMed
146Louheranta, AM, Turpeinen, AK, Vidgren, HM, Schwab, US, Uusitupa, MIJ. A high- trans fatty acid diet and insulin sensitivity in young healthy women. Metabolism 1999; 48: 870–5.CrossRefGoogle ScholarPubMed
147Borkman, M, Chisholm, DJ, Furler, SM, Storlien, LH, Kraegen, EW, Simons, LA, Chesterman, CN. Effects of fish-oil supplementation on glucose and lipid metabolism in NIDDM. Diabetes 1989; 38: 1314–9.CrossRefGoogle ScholarPubMed
148Annuzzi, G, Rivellese, A, Capaldo, B, Di Marino, L, Iovine, C, Marotta, G, Riccardi, G. A controlled study on the effects of n -3 fatty acids on lipid and glucose metabolism in non-insulin-dependent diabetic patients. Atherosclerosis 1991; 87: 6573.CrossRefGoogle Scholar
149Boberg, M, Pollare, T, Siegbahn, A, Vessby, B. Supplementation with n -3 fatty acids reduces triglycerides but increases PAI-1 in non-insulin-dependent diabetes mellitus. European Journal of Clinical Investigation 1992; 22: 645–50.CrossRefGoogle Scholar
150McManus, RM, Jumpson, J, Finegood, DT, Clandinin, MT, Ryan, EA. A comparison of the effects of n -3 fatty acids from linseed oil and fish oil in well controlled type II diabetes. Diabetes Care 1996; 19: 463–7.CrossRefGoogle Scholar
151Rivellese, AA, Maffettone, A, Iovine, C, Di Marino, L, Annuzzi, G, Mancini, M, Riccardi, G. Long-term effects of fish oil on insulin resistance and plasma lipoproteins in NIDDM patients with hypertriglyceridemia. Diabetes Care 1996; 19: 1207–13.CrossRefGoogle ScholarPubMed
152Grundy, SM. The optimal ratio of fat-to-carbohydrate in the diet. Annual Review of Nutrition 1999; 19: 325–41.CrossRefGoogle ScholarPubMed
153Bray, GA, Popkin, BM. Dietary fat intake does affect obesity. American Journal of Clinical Nutrition 1998; 68: 1157–73.CrossRefGoogle ScholarPubMed
154Richards, MK, Paeratakul, S, Bray, GA, Popkin, BM. Current theories regarding the influence of diet and the control of obesity. In: Wilson, T, Temple, NJ, eds. Nutritional Health: Strategies for Disease Prevention. Totowa, NJ: Human Press Inc., 2001; 135–50.CrossRefGoogle Scholar
155Tsunehara, CH, Leonetti, DL, Fujimoto, WY. Diet of second-generation Japanese-American men with and without non-insulin-dependent diabetes. American Journal of Clinical Nutrition 1990; 52: 731–8.CrossRefGoogle ScholarPubMed
156Grundy, SM, Denke, M. Dietary influences on serum lipids and lipoproteins. Journal of Lipid Research 1990; 31: 1149–72.CrossRefGoogle ScholarPubMed
157Nestle, PJ, Carroll, KF, Havenstein, N. Plasma triglyceride response to carbohydrates, fats and caloric intake. Metabolism 1970; 19: 118.CrossRefGoogle Scholar
158Mensink, RP, Katan, MB. Effect of dietary fatty acids on serum lipids and lipoproteins: a meta-analysis of 27 trials. Arteriosclerosis and Thrombosis 1992; 12: 911–9.CrossRefGoogle ScholarPubMed
159Jeppesen, J, Schaaf, P, Jones, C, Zhou, MY, Chen, YD, Reaven, GM. Effects of low-fat, high-carbohydrate diets on risk factors for ischemic heart disease in postmenopausal women. American Journal of Clinical Nutrition 1997; 65: 1027–33.CrossRefGoogle ScholarPubMed
160Parks, EJ, Hellerstein, MK. Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. American Journal of Nutrition 2000; 71: 412–33.Google ScholarPubMed
161Meyer, KA, Kushi, LH, Jacobs, DR, Slavin, J, Sellers, TA, Folsom, AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. American Journal of Clinical Nutrition 2000; 71: 921–30.CrossRefGoogle ScholarPubMed
162Bessesen, DH. The role of carbohydrates in insulin resistance. Journal of Nutrition 2001; 131: 2782S–6S.CrossRefGoogle ScholarPubMed
163Reaven, GM. Do high carbohydrate diets prevent the development or attentuate the manifestations (or both) of syndrome X? A viewpoint strong against. Current Opinion in Lipidology 1997; 8: 23–7.CrossRefGoogle ScholarPubMed
164Rassmussen, OW, Thomsen, C, Hansen, KW, Vesterlund, M, Winther, E, Hermansen, K. Effects on blood pressure, glucose, and lipid levels of a high-monounsaturated fat diet compared with a high-carbohydrate diet in NIDDM subjects. Diabetes Care 1993; 16: 1565–71.CrossRefGoogle Scholar
165Krauss, RM, Eckel, RH, Howard, B, et al. AHA dietary guidelines revision 2000: a statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation 2000 2000; 102: 2284–99.Google ScholarPubMed
166Carbohydrates in Human Nutrition. Report of a Joint FAO/WHO Expert Consultation. FAO Food and Nutrition Paper 66. Rome: Food and Agriculture Organization of the United Nations, 1998.Google Scholar
167Granfeldt, Y, Hagander, B, Björck, I. Metabolic responses to starch in oat and wheat products. On the importance of food structure, incomplete gelatinization or presence of viscous fibre. European Journal of Clinical Nutrition 1995; 49: 189–99.Google ScholarPubMed
168Granfeldt, Y, Björck, I, Hagander, B. On the importance of processing conditions, products thickness and eggs addition, for the glycemic and hormonal responses to pasta—a comparison with white bread made from pasta ingredients. European Journal of Clinical Nutrition 1991; 45: 489.Google Scholar
169Englyst, H, Kingman, S, Cummings, J. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 1992; 46: 33S–50S.Google ScholarPubMed
170Holm, J, Koellreutter, B, Wursch, P. Influence of sterilization, drying and oat bran enrichment of pasta on glucose and insulin responses in healthy subjects and on the rate and extent of in vitro starch digestion. European Journal of Clinical Nutrition 1992; 46: 629.Google ScholarPubMed
171Jenkins, DJ, Wolever, TM, Taylor, RH, Barker, H, Fielden, H, Baldwin, JM, Bowling, AC, Newman, HC, Jenkins, AL, Goff, DV. Glycemic index of foods: a physiological basis for carbohydrate exchange. American Journal of Clinical Nutrition 1981; 34: 362–6.CrossRefGoogle Scholar
172Trowell, HC. Dietary fibre, ischaemic heart disease and diabetes mellitus. Proceeding of the Nutrition Society 1973; 32: 151–7.CrossRefGoogle ScholarPubMed
173Trowell, HC. Dietary fibre hypothesis of the aetiology of diabetes mellitus. Diabetes 1975; 24: 762–5.CrossRefGoogle ScholarPubMed
174Feskens, EJ, Loeber, JG, Kromhout, D. Diet and physical activity as determinants of hyperinsulinaemia: the Zutphen Elderly Study. American Journal of Epidemiology 1994; 140: 350–60.CrossRefGoogle ScholarPubMed
175Tuomilehto, J, Lindstrom, J, Eriksson, JG, Valle, TT, Hamalainen, H, Ilanne-Parikka, P, Keinanen-Kiukaanniemi, S, Laakso, M, Louheranta, A, Rastas, M, Salminen, V, Uusitupa, M. and for the Finnish Diabetes Prevention Study Group Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England Journal of Medicine 2001; 344: 1343–50.CrossRefGoogle Scholar
176 Diet and exercise dramatically delay type 2 diabetes. Press release of the National Institute of Diabetes and Digestive and Kidney Diseases. August 8, Accessed November 29, 2001 at httpp:/www.nih.gov/news/pr/aug2001/niddk-08.htm.Google Scholar
177McIntosch, M, Miller, C. A diet containing food rich in soluble and insoluble fibre improves glycemic control and reduces hyperlipidemia among patients with type 2 diabetes mellitus. Nutrition Reviews 2001; 59: 52–5.CrossRefGoogle Scholar
178Jenkins, DJ, Jenkins, AL. Dietary fiber and the glycemic response. Proceedings of the Society for Experimental Biology and Medicine 1985; 180: 422–31.CrossRefGoogle ScholarPubMed
179Anderson, JW. Fiber and health: an overview. American Journal of Gastroenterology 1986; 81: 892–7.Google ScholarPubMed
180Frost, G, Wilding, J, Beecham, J. Dietary advice based on the glycemic index improves dietary profile and metabolic control in type 2 diabetic patients. Diabetic Medicine 1994; 11: 340–67.CrossRefGoogle ScholarPubMed
181Brand, JC, Colagiuri, S, Crossman, S, Allen, A, Roberts, DC, Truswell, AS. Low-glycemic index foods improve long-term glycemic control in NIDDM. Diabetes Care 1991; 14: 95101.CrossRefGoogle ScholarPubMed
182Fontvieille, AM, Rizkalla, SW, Penfornis, A, Acosta, M, Bornet, FR, Slama, G. The use of low glycaemic index foods improves metabolic control of diabetic patients over five weeks. Diabetic Medicine 1992; 9: 444–50.CrossRefGoogle ScholarPubMed
183Wolever, TMS, Jenkins, DJA, Vuksan, V, Jenkins, AL, Buckley, GC, Wong, GS, Josse, RG. Beneficial effect of a low glycemic index diet in type 2 diabetes. Diabetic Medicine 1992; 9: 451–8.CrossRefGoogle ScholarPubMed
184Jenkins, DJ, Wolever, TM, Kalmusky, J, et al. Low-glycemic index diet in hyperlipidemia: use of traditional starchy foods. American Journal of Clinical Nutrition 1987; 45: 6671.CrossRefGoogle Scholar
185Brand-Miller, JC. The importance of glycemic index in diabetes. American Journal of Clinical Nutrition 1994; 59(Suppl.): 747S–52S.CrossRefGoogle Scholar
186Kushi, LH, Meyer, KA, Jacobs, DR. Cereals, legumes, and chronic disease risk reduction: evidence from epidemiologic studies. American Journal of Clinical Nutrition 1999; 70(Suppl): 451S–8S.CrossRefGoogle ScholarPubMed
187Liu, S, Stampfer, MJ, Hu, FB, Giovannucci, E, Rimm, E, Manson, JE, Hennekens, CH, Willett, WC. Whole-grain consumption and risk of coronary heart disease: results from the Nurses' Health Study. American Journal of Clinical Nutrition 1999; 70: 412–9.CrossRefGoogle ScholarPubMed
188Jacobs, DR, Meyer, KA, Kushi, LH, Folsom, AR. Whole-grain intake may reduce the risk of ischemic heart disease death in postmenopausal women: the Iowa Women's Health Study. American Journal of Clinical Nutrition 1998; 68: 248–57.CrossRefGoogle ScholarPubMed
189Department of Health. Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy. London: HMSO, 1991.Google Scholar
190Sullivan, A. Healthy eating: something to chew over? Nursing Standards 2000; 14: 43–6.CrossRefGoogle ScholarPubMed
191Hannon-Fletcher, M, Hughes, C, O'Kane, MJ, Moles, KW, Barnett, CR, Barnett, YA, In: Basu, TK, Temple, NJ and Garg, ML eds. Antioxidants in Human Health and Disease. Wallingford, UK: CABI Publishing, 1999; 259–69.Google Scholar
192Jain, SK. Oxidative stress, vitamin E and diabetes. In: Basu, TK, Temple, NJ, Garg, ML, eds. Antioxidants in Human Health and Disease. Wallingford, UK: CABI Publishing, 1999; 249–57.Google Scholar
193Salonen, JT, Nyyssonen, K, Tuomainen, TP, Maenpaa, PH, Korpela, H, Kaplan, GA, Lynch, J, Helmrich, SP, Salonen, R. Increased risk of non-insulin dependent diabetes mellitus at low plasma vitamin E concentrations: a four year follow up study in men. British Medical Journal 1995; 311: 1124–7.CrossRefGoogle ScholarPubMed
194Reunanen, A, Knekt, P, Aaran, RK, Aromaa, A. Serum antioxidants and risk of non-insulin dependent diabetes mellitus. European Journal of Clinical Nutrition 1998; 52: 8993.CrossRefGoogle ScholarPubMed
195Kao, WH, Folsom, AR, Nieto, FJ, Mo, JP, Watson, RL, Brancati, FL. Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Archives of Internal Medicine 1999; 159: 2151–9.CrossRefGoogle ScholarPubMed
196Schwarz, K, Mertz, W. Chromium (III) and the glucose tolerance factor. Archives of Biochemistry and Biophysics 1959; 85: 292–5.CrossRefGoogle ScholarPubMed
197Lukaski, HC. Chromium as a supplement. Annual Review of Nutrition 1999; 19: 279302.CrossRefGoogle ScholarPubMed
198Vincent, JB. Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutrition Reviews 2000; 58(3): 6772.CrossRefGoogle ScholarPubMed
199Anderson, RA, Polansky, MM, Bryden, NA, Canary, JJ. Supplemental-chromium effects on glucose, insulin, glucagon, and urinary chromium losses in subjects consuming controlled low-chromium diets. American Journal of Clinical Nutrition 1991; 54: 909–16.CrossRefGoogle ScholarPubMed
200Striffler, JS, Polansky, MM, Anderson, RA. Dietary chromium decreases insulin resistance in rats fed a high-fat, mineral-imbalanced diet. Metabolism 1998; 47: 396400.CrossRefGoogle ScholarPubMed
201Striffler, JS, Law, JS, Polansky, MM, Bhathena, SJ, Anderson, RA. Chromium improves insulin response to glucose in rats. Metabolism 1995; 44: 1314–20.CrossRefGoogle ScholarPubMed
202Anderson, RA, Bryden, NA, Polansky, MM, Gautschi, K. Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. Journal of Trace Elements in Experimental Medicine 1996; 9: 1125.3.0.CO;2-K>CrossRefGoogle Scholar
203Anderson, RA, Cheng, N, Bryden, NA, Polansky, MM, Cheng, N, Chi, J, Feng, J. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1997; 46: 1786–91.CrossRefGoogle ScholarPubMed
204Stampfer, MJ, Colditz, GA, Willett, WC, Manson, JE, Arky, RA, Hennekens, CH, Speizer, FE. A prospective study of moderate alcohol drinking and risk of diabetes in women. American Journal of Epidemiology 1988; 128: 549–58.CrossRefGoogle ScholarPubMed
205Rimm, EB, Chan, J, Stampfer, MJ, Colditz, GA, Willett, WC. Prospective study of cigarette smoking, alcohol use, and the risk of diabetes in men. British Medical Journal 1995; 310: 555–9.CrossRefGoogle ScholarPubMed
206Ajani, UA, Hennekens, CH, Spelsberg, A, Manson, JE. Alcohol consumption and risk of type 2 diabetes mellitus among US male physicians. Archives of Internal Medicine 2000; 160: 1025–30.CrossRefGoogle ScholarPubMed
207Kao, WH, Puddey, IB, Boland, LL, Watson, RL, Brancati, FL. Alcohol consumption and the risk of type 2 diabetes mellitus: Atherosclerosis Risk in Communities Study. American Journal of Epidemiology 2001; 154: 748–57.CrossRefGoogle ScholarPubMed
208O'Sullivan, JB. Diabetes mellitus after GDM. Diabetes 1991; 40(Suppl. 2): 131–5.CrossRefGoogle ScholarPubMed
209Pettitt, DJ, Knowler, WC, Baird, HR, Bennett, PH. Gestational diabetes: infant and maternal complications of pregnancy in relation to third-trimester glucose tolerance in the Pima Indians. Diabetes Care 1980; 3: 458–64.CrossRefGoogle ScholarPubMed
210Pettitt, DJ, Aleck, KA, Baird, HR, Carraher, MJ, Bennett, PH, Knowler, WC. Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes 1988; 37: 622–8.CrossRefGoogle ScholarPubMed
211Gautier, JF, Wilson, C, Weyer, C, Mott, D, Knowler, WC, Cavaghan, M, Polonsky, KS, Bogardus, C, Pratley, RE. Low acute insulin secretory responses in adult offspring of people with early onset type 2 diabetes. Diabetes 2001; 50: 1828–33.CrossRefGoogle ScholarPubMed
212Dabelea, D, Hanson, RL, Lindsay, RS, Pettitt, DJ, Imperatore, G, Gabir, MM, Roumain, J, Bennett, PH, Knowler, WC. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 2000; 49: 2208–11.CrossRefGoogle ScholarPubMed
213Hales, CN, Barker, DJ, Clark, PM, Cox, LJ, Fall, C, Osmond, C, Winter, PD. Fetal and infant growth and impaired glucose tolerance at age 64. British Medical Journal 1991; 303: 1019–22.CrossRefGoogle ScholarPubMed
214Barker, DJP, Hales, CN, Fall, CHD, Osmond, C, Phipps, K, Clark, PMS. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993; 36: 62–7.CrossRefGoogle ScholarPubMed
215Valdez, R, Athens, MA, Thompson, GH, Bradshaw, BS, Stern, MP. Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia 1994; 37: 624–31.CrossRefGoogle Scholar
216McCance, DR, Pettit, DJ, Hanson, RL, Jacobsson, LTH, Knowler, WC, Bennett, PH. Birthweight and non-insulin dependent diabetes: ‘thrifty genotype’, ‘thrifty phenotype’, or ‘surviving small baby genotype’? British Medical Journal 1994; 308: 942–5.CrossRefGoogle ScholarPubMed
217Curhan, GC, Willett, WC, Rimm, EB, Stampfer, MJ. Birthweight and adult hypertension and diabetes in US men. Abstract. American Journal of Hypertension 1996; 9: 11A.CrossRefGoogle Scholar
218Lithell, HO, McKeigue, PM, Berglund, L, Mohsen, R, Lithell, UB, Leon, DA. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. British Medical Journal 1996; 312: 406–10.CrossRefGoogle ScholarPubMed
219Phillips, DIW. Insulin resistance as a programmed response to fetal undernutrition. Diabetologia 1996; 39: 1119–22.CrossRefGoogle ScholarPubMed
220Barker, DJP. Mothers, Babies and Health in Later Life. Edinburgh: Harcourt Brace & Co. Ltd., 1998.Google Scholar
221McCance, RA, Widdowson, EM. The determinants of growth and form. Proceedings of the Royal Society London B Biological Sciences 1974; 185: 117.Google ScholarPubMed
222Stern, MP, Bartley, M, Duggirala, R, Bradshaw, B. Birth weight and the metabolic syndrome: thrifty phenotype or thrifty genotype? Diabetes-Metabolism Research and Reviews 2000; 16: 8893.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
223McCance, DR, Pettitt, DJ, Hanson, RL, Jacobsson, LT, Knowler, WC, Bennett, PH. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? British Medical Journal 1994; 308: 942–5.CrossRefGoogle ScholarPubMed
224Dabelea, D, Pettitt, DJ, Hanson, RL, Imperatore, G, Bennett, PH, Knowler, WC. Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and young adults. Diabetes Care 1999; 22: 944–50.CrossRefGoogle ScholarPubMed
225Hales, CN, Desai, M, Ozanne, SE. The thrifty phenotype hypothesis: how does it look after 5 years? Diabetic Medicine 1997; 14: 189–95.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
226Lithell, HO, McKeigue, PM, Berglund, L, Mohsen, R, Lithell, UB, Leon, DA. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. British Medical Journal 1996; 312: 406–10.CrossRefGoogle ScholarPubMed
227Hales, CN, Barker, DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35: 595601.CrossRefGoogle ScholarPubMed
228Ravelli, ACJ, van der Meulen, JHP, Michels, RP, Osmond, C, Barker, DJ, Hales, CN, Bleker, OP. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998; 351: 173–7.CrossRefGoogle ScholarPubMed
229Barker, DJP, Godfrey, KM. Fetal nutrition and cardiovascular disease in adult life. In: Wilson, T, Temple, N, eds. Nutritional Health: Strategies for Prevention. Totowa, NJ: Humana Press, 2001.Google Scholar
230Fall, CHD, Stein, CE, Kumaran, K, Cox, V, Osmond, C, Barker, DJ, Hales, CN. Size at birth, maternal weight, and type 2 diabetes in South India. Diabetic Medicine 1998; 15: 220–7.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
231Mathews, F, Yudkin, P, Neil, A. Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. British Medical Journal 1999; 319: 339–43.CrossRefGoogle ScholarPubMed
232Campbell, DM, Hall, MH, Barker, DJP, Cross, J, Shiell, AW, Godfrey, KM. Diet in pregnancy and the offspring's blood pressure 40 years later. British Journal of Obstetrics and Gynaecology 1996; 103: 273–80.CrossRefGoogle ScholarPubMed
233Godfrey, K, Robinson, S, Barker, DJP, Osmond, C, Cox, V. Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. British Medical Journal 1996; 312: 410–4.CrossRefGoogle ScholarPubMed
234Bennett, PH. Type 2 diabetes among the Pima Indians of Arizona: an epidemic attributable to environmental change. Nutrition Reviews 1999; 57: S51–4.CrossRefGoogle ScholarPubMed
235Pettitt, DJ, Forman, MR, Hanson, RL, Knowler, WC, Bennett, PH. Breastfeeding and incidence of non-insulin-dependent diabetes mellitus in Pima Indians. Lancet 1997; 350: 166–8.CrossRefGoogle ScholarPubMed
236Young, TK, Martens, PJ, Taback, SP, Sellers, EA, Dean, HJ, Cheang, M, Flett, B. Type 2 diabetes mellitus in children: prenatal and early infancy risk factors among native Canadians. Archives of Pediatrics & Adolescent Medicine 2002; 156: 651–5.CrossRefGoogle ScholarPubMed
237Pradhan, AD, Manson, JE, Rifai, N, Buring, JE, Ridker, PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Journal of the American Medical Association 2001; 286: 327–34.CrossRefGoogle ScholarPubMed
238Festa, A, D'Agostino, R Jr, Mykkanen, L, Tracy, RP, Zaccaro, DJ, Hales, CN, Haffner, SM. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance. The Insulin Resistance Atherosclerosis Study (IRAS). Arteriosclerosis Thrombosis and Vascular Biology 1999; 19: 562–8.CrossRefGoogle Scholar
239Pickup, JC, Crook, MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998; 41: 1241–8.CrossRefGoogle ScholarPubMed
240Lindsay, RS, Krakoff, J, Hanson, RL, Bennett, PH, Knowler, WC. Gamma globulin levels predict type 2 diabetes in the Pima Indian population. Diabetes 2001; 50: 1598–603.CrossRefGoogle ScholarPubMed
241Lindstedt, G, Lundberg, PA, Lapidus, L, Lundgren, H, Bengtsson, C, Bjorntorp, P. Low sex hormone-binding globulin concentration as independent risk factor for development of NIDDM: 12-year follow-up of population study of women in Gothenburg, Sweden. Diabetes 1991; 40: 123–8.CrossRefGoogle Scholar
242Haffner, SM, Valdez, RA, Morales, PA, Hazuda, HP, Stern, MP. Decreased sex hormone-binding globulin predicts non-insulin-dependent diabetes mellitus in women but not in men. Journal of Clinical Endocrinology & Metabolism 1993; 77: 5660.Google Scholar
243Haffner, SM, Karhapää, P, Mykkänen, L, Laakso, M. Insulin resistance, body fat distribution and sex hormones in men. Diabetes 1994; 43: 212–9.CrossRefGoogle ScholarPubMed
244Charles, MA, Pettitt, DJ, McCance, DR, Hanson, RL, Bennett, PH, Knowler, WC. Gravidity, obesity, and non-insulin-dependent diabetes among Pima Indian women. American Journal of Medicine 1994; 97: 250–5.CrossRefGoogle ScholarPubMed
245Pan, XR, Li, GW, Hu, YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997; 20: 537–44.CrossRefGoogle Scholar
246Eriksson, K-F, Lindgarde, F. Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diabetes mellitus by diet and physical exercise: the 6-Year Malmo Feasibility Study. Diabetologia 1991; 34: 891–8.CrossRefGoogle ScholarPubMed
247Uusitupa, M, Louheranta, A, Lindstrom, J, Valle, T, Sundvall, J, Eriksson, J, Tuomilehto, J. The Finnish Diabetes Prevention Study. British Journal of Nutrition 2000; 83:(Suppl. 1): S137–42.CrossRefGoogle ScholarPubMed
248Temple, NJ, Nestle, M. Population nutrition, health promotion and government policy. In: Wilson, T, Temple, NJ, eds. Nutritional Health: Strategies for Diseases Prevention. Totowa, NJ: Humana, 2001; 1329.CrossRefGoogle Scholar