Skip to main content
Log in

Effect of Exercise on Serum Enzyme Activities in Humans

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Increased serum enzyme activity after exercise was first reported in 1958; subsequent studies have established that many factors determine the degree to which the serum activities of a variety of enzymes increase during and after exercise.

The serum activities of those enzymes found especially in muscle, particularly creatine kinase, increase in proportion to the intensity and duration of the preceding exercise, peaking 24 hours after exercise; the effect of duration is dominant, so that the highest postexercise serum enzyme activities are found after very prolonged competitive exercise such as ultradistance marathon running or triathlon events. Weight-bearing exercises which include eccentric muscular contractions such as bench stepping and downhill running induce the greatest increases in serum enzyme activities; serum enzyme activities increase very little even after prolonged participation in those non-weight-bearing activities such as swimming and cycling which do not include eccentric muscular contractions. Prolonged (>2 hours) daily training or competition in weight-bearing activities produces chronically elevated serum enzyme activities. Serum enzyme activities increase more with exercise in males, Blacks and the untrained than th ey do in females, Whites and the trained, respectively; age does not appear to influence the degree to which serum enzyme activities increase with exercise. There is a remarkable individual variability in the degree to which serum enzyme activities increase with exercise; a 50-fold difference in post-race serum creatine kinase activities has been found in healthy and equally trained athletes completing the same 90km ultra-marathon footrace. The biochemical explanation for this degree of individual variability is not currently understood; possibly persons who show abnormally large increases in serum enzyme activities with exercise may have as yet unrecognised subclinical myopathies. No circadian rhythms have been identified for serum enzyme activities; activities rise during the day because of increased physical activity. The rise in serum enzyme activities is greater after exercise at altitude or in the heat than after equivalent exercise at sea level or in the cold.

The most likely explanation for the increased serum enzyme activities that follow prolonged weight-bearing activities that also cause marked muscle soreness, is myofibrillar damage in particular sarcomeric Z-disk disruption. Alternate postulates such as sarcolemmal damage due to muscle glycogen depletion or lipid peroxidation seem less likely as they fail to explain the very different responses of serum enzyme activities to equivalent running or cycling exercise, both of which induce the same degree of muscle glycogen depletion and free radical production. The rise in serum enzyme activities that occurs, particularly after prolonged exercise such as marathon running, mimics exactly the changes that occur with acute myocardial infarction; thus the clinical interpretation of increased serum enzyme activities in persons who are physically active must be approached with extreme caution. The value of alternate diagnostic tests including the measurement of the serum content of the acute phase response protein s to distinguish the normal exercise response from that occurring during acute myocardial infarction, has yet to be determined. Serum creatine kinase activity measured both at rest and after exercise is useful in the diagnosis of Duchenne muscular dystrophy and, in particular, in the detection of the female carriers of this condition. There is, as yet, no proven value in the routine measurement of serum enzyme activities in athletes in training. In particular, serum enzyme activities cannot distinguish between appropriate training and overtraining. In addition, especially after very prolonged exercise such as ultra-marathon running, serum enzyme activities return to normal weeks or even months before normal running performance returns. Thus, complete recovery from prolonged exercise cannot be predicted on the basis of serum enzyme activities.

At present, the most interesting clinical application for the measurement of serum enzyme activities in the active and apparently healthy population might be the identification of subclinical myopathies, some of which may predispose to the development of acute renal failure or heatstroke during very prolonged exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreotti L, Bencini A, Nuzzaci G. On some hormonal variations following athletic exercise of an antagonistic nature: modifications of glutamic-oxalacetic and glutamic-pyruvic transaminase activity. Societa Italian di Biologia Sperimentale Bollettino 35: 1348–1350, 1959

    CAS  Google Scholar 

  • Apple FS. Presence of creatine kinase MB isoenzyme during marathon training. New England Journal of Medicine 305: 764–765, 1981

    PubMed  CAS  Google Scholar 

  • Apple FS, McGue MK. Serum enzyme changes during marathon training. American Journal of Clinical Pathology 79: 716–719, 1983

    PubMed  CAS  Google Scholar 

  • Apple FS, Rogers MA. Skeletal muscle lactate dehydrogenase isoenzyme alterations in marathon runners. Journal of Applied Physiology 61: 477–481, 1986.

    PubMed  CAS  Google Scholar 

  • Apple FS, Rogers MA, Sherman WM, Ivy JL. Comparison of serum creatine kinase and creatine kinase MB activities post marathon versus post myocardial infarction. Clinica Chimica Acta 138: 111–118, 1984

    Article  CAS  Google Scholar 

  • Apple FS, Rogers MA, Casal DC, Sherman WM, Ivy JL. Creatine kinase-MB isoenzyme adaptations in stressed human skeletal muscle of marathon runners. Journal of Applied Physiology 59: 149–153, 1985

    PubMed  CAS  Google Scholar 

  • Baadsgaard O, Schmidt JF. Myoglobin concentration, creatine kinase, and creatine kinase subunit B activity in serum after myocardial ischaemia. Scandinavian Journal of Clinical and Laboratory Investigation 44: 679–682, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bais R, Edwards JB. Creatine kinase. CRC Critical Reviews of Clinical and Laboratory Sciences 16: 291–335, 1982

    Article  CAS  Google Scholar 

  • Bank WJ. Myoglobinuria in marathon runners: possible relationship to carbohydrate and lipid metabolism. Annals of the New York Academy of Sciences 301: 942–948, 1977

    Article  PubMed  CAS  Google Scholar 

  • Bark S, Bergstrom K, Eriksson S, Henriksson J, Lindberg K. Serum enzyme CK-B rise following exhaustive physical exercise. American Heart Journal 102: 1079, 1981

    Article  PubMed  CAS  Google Scholar 

  • Barron JL, Noakes TD, Levy W, Smith C, Millar RP. Hypothalamic dysfunction in overtrained athletes. Journal of Endocrinology and Metabolism 60: 803–806, 1985

    Article  CAS  Google Scholar 

  • Berg A, Haralambie G. Changes in serum creatine kinase and hexose phosphate isomerase activity with exercise duration. European Journal of Applied Physiology 39: 191–201, 1978

    Article  CAS  Google Scholar 

  • Bornheimer JF, Lau FY. Effects of treadmill exercise on total and myocardial creatine phosphokinase. Chest 80: 146–148, 1981

    Article  PubMed  CAS  Google Scholar 

  • Bricknell OL, Daries PS, Opie LH. A relationship between adenosine triphosphate, glycolysis and ischaemic contracture in the isolated rat heart. Journal of Molecular and Cellular Cardiology 13: 941–945, 1981

    Article  PubMed  CAS  Google Scholar 

  • Brooke MH, Carroll JE, Davis JE, Hagberg JM. The prolonged exercise test. Neurology 29: 636–643, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Byrnes WC, Clarkson PM, White JS, Hsieh SS, Frykman PN, et al. Delayed onset muscle soreness following repeated bouts of downhill running. Journal of Applied Physiology 59: 710–715, 1985

    PubMed  CAS  Google Scholar 

  • Bryze G, Egberts PFC, Van Breukelen EAJ, Van Win EE. Serum enzyme activity and physical condition. Journal of Sports Medicine and Physical Fitness 16: 155–164, 1976.

    Google Scholar 

  • Cantone A, Cerrettelli P. The effects of muscular work on serum aldolase activity in trained and untrained men. International Zietschrift fur Angewandte Physiologie Einschliesslich Arbeit-physiologie 18: 107, 1960

    CAS  Google Scholar 

  • Carroll JE, Norris BJ, Brooke MH. Defective [U-14C] palmitic acid oxidation in Duchenne muscular dystrophy. Neurology 35: 96–97, 1985

    Article  PubMed  CAS  Google Scholar 

  • Carroll JE, Villadiego A, Brooke MH. Increased long-chain acyl-CoA in Duchenne muscular dystrophy. Neurology 33: 1507–1510, 1983

    Article  PubMed  CAS  Google Scholar 

  • Carroll JE, Brooke MH, DeVivo DC, Kaiser KK, Hagberg JM. Biochemical and physiologic consequences of carnitine palmityltransferase deficiency. Muscle and Nerve 1: 103–110, 1978

    Article  PubMed  CAS  Google Scholar 

  • Chahine RA, Kazantzis A, Luchi RJ, Raizner AE, Gyorkey F. Effect of routine treadmill testing on the serum enzymes. Cardiology 61: 162–169, 1976

    Article  PubMed  CAS  Google Scholar 

  • Costrini AM, Pitt HA, Gustafson AB, Uddin DE. Cardiovascular and metabolic manifestations of heat stroke and severe heat exhaustion. American Journal of Medicine 66: 296–302, 1979

    Article  PubMed  CAS  Google Scholar 

  • Critz JB, Merrick AW. Serum glutamic-oxalacetic transaminase levels after exercise in men. Proceedings of the Society for Experimental Biology and Medicine 109: 608–610, 1962

    PubMed  CAS  Google Scholar 

  • Critz JB, Cunningham DA. Plasma enzyme levels in man after different physical activities. Journal of Sports Medicine and Physical Fitness 12: 143–149, 1972a

    PubMed  CAS  Google Scholar 

  • Critz JB, Cunningham DA, Rechnitzer PA, Yuhasz MS. Plasma enzyme levels in post-coronary patients after exercise and training. Archives of Physical Medicine and Rehabilitation 53: 499–502, 1972b

    PubMed  CAS  Google Scholar 

  • Cunningham DA, Critz JB. Effect of hypoxia and physical activity on plasma enzyme levels in man. International Zietschrift fur Angewandte Physiologie Einschliesslich Arbeitphysiologie 30: 302–308, 1972

    CAS  Google Scholar 

  • Davies B, Daggett A, Watt DAL. Serum creatine kinase and isoenzyme responses of veteran class fell runners. European Journal of Applied Physiology 48: 345–354, 1982

    Article  CAS  Google Scholar 

  • Diamond TH, Smith R, Goldman AP, Myburgh DP, Bloch JM, et al. The dilemma of the creatine kinase cardiospecific isoenzyme (CK-MB) in marathon runners. South African Medical Journal 63: 37–41, 1983

    PubMed  CAS  Google Scholar 

  • Dressendorfer RH, Wade CE. The muscular overuse syndrome in long-distance runners. Physician and Sports Medicine 11: 116–130, 1983

    Google Scholar 

  • Dufaux B, Order U, Geyer H, Hollmann W. Creactive protein serum concentrations in well-trained athletes. International Journal of Sports Medicine 5: 102–106, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ebashi S, Toyokura Y, Momoi H, Sugita H. High creatine phosphokinase activity of sera of progressive muscular dystrophy. Journal of Biochemistry 46: 103–107, 1959

    CAS  Google Scholar 

  • Florence JM, Fox PT, Planer GJ, Brooke MH. Activity, creatine kinase, and myoglobin in Duchenne muscular dystrophy: a clue to etiology? Neurology 35: 758–761, 1985

    Article  PubMed  CAS  Google Scholar 

  • Fojt E, Ekelund LG, Hultman E. Enzyme activities in hepatic venous blood under strenuous physical exercise. Pflugers Archives 361: 287–296, 1976

    Article  CAS  Google Scholar 

  • Fowler WM, Chowdhury SR, Pearson CM, Gardner G, Bratton R. Changes in serum enzyme levels after exercise in trained and untrained subjects. Journal of Applied Physiology 17: 943–946, 1962

    PubMed  CAS  Google Scholar 

  • Fowler WM, Gardner GW, Kazerunian HH, Lauvstad WA. The effect of exercise on serum enzymes. Archives of Physical Medicine and Rehabilitation 49: 554–565, 1968

    PubMed  Google Scholar 

  • Francesconi RP, Maher JT, Bynum GD, Mason JW. Recurrent heat exposure: enzymatic responses in resting and exercising men. Journal of Applied Physiology 43: 308–311, 1977

    PubMed  CAS  Google Scholar 

  • Friden J, Sjostrom M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. International Journal of Sports Medicine 4: 170–176, 1983

    Article  PubMed  CAS  Google Scholar 

  • Gaines RF, Pueschel SM, Sassaman EA, Driscoll JL. Effect of exercise on serum creatine kinase in carriers of Duchenne muscular dystrophy. Journal of Medical Genetics 19: 4–7, 1982

    Article  PubMed  CAS  Google Scholar 

  • Gale AN, Murphy EA. The use of serum creatine phosphokinase in genetic counselling for Duchenne muscular dystrophy. II. Review of methods of assay and factors which may be relevant in the interpretation of serum creatine phosphokinase activity. Journal of Chronic Diseases 32: 639–651, 1979

    Article  PubMed  CAS  Google Scholar 

  • Galun E, Epstein Y. Serum creatine kinase activity following a 120-km march. Clinica Chimica Acta 143: 281–283, 1984

    Article  CAS  Google Scholar 

  • Gardner GW, Bratton R, Chowdhury SR, Fowler WM, Pearson CM. Effect of exercise on serum enzyme levels in trained subjects. Journal of Sports Medicine and Physical Fitness 4: 103–110, 1964

    Google Scholar 

  • Gardner-Medwin D, Pennington RJ, Walton JN. The detection of carriers of X-linked muscular dystrophy genes: a review of some methods studied in Newcastle upon Tyne. Journal of the Neurological Sciences 13: 459–474, 1971

    Article  PubMed  CAS  Google Scholar 

  • Grande P, Pedersen A, Schaadt O, Corfitsen T, Andersen BT. Cardio-specific serum enzyme CK-MB following physical exercise in acute myocardial infarction. European Journal of Cardiology 11: 161–167, 1980

    PubMed  CAS  Google Scholar 

  • Griffiths PD. Serum levels of ATP: creatine phosphotransferase (creatine kinase): the normal range and effect of muscular activity. Clinica Chimica Acta 13: 413–420, 1966

    Article  CAS  Google Scholar 

  • Halonen PI, Konttinen A. Effect of physical exercise on some enzymes in the serum. Nature 193: 942–944, 1962

    Article  PubMed  CAS  Google Scholar 

  • Haralambie G. Neuromuscular irritability and serum creatine phosphate kinase in athletes in training. International Zeitschrift fur Angewandte Physiologie Einschliesslich Arbeitphysiologie 31: 279-288, 1973

    Google Scholar 

  • Haralambie G. Serum gamma-glutamyl transpeptidase and physical exercise. Clinica Chimica Acta 72: 363–369, 1976

    Article  CAS  Google Scholar 

  • Haralambie G. Serum aldolase isoenzymes in athletes at rest and after long-lasting exercise. International Journal of Sports Medicine 2: 31–36, 1981

    Article  PubMed  CAS  Google Scholar 

  • Haralambie G, Senser L. Metabolic changes in man during long-distance swimming. European Journal of Applied Physiology 43: 115–125, 1980

    Article  CAS  Google Scholar 

  • Haralambie G, Cerny FJ, Huber G. Serum enzyme levels after bobsled racing. Journal of Sports Medicine and Physical Fitness 16: 54–56, 1976

    PubMed  CAS  Google Scholar 

  • Helgheim I, Hetland O, Nilsson S, Ingjer F, Stromme SB. The effects of vitamin E on serum enzyme levels following heavy exercise. European Journal of Applied Physiology 40: 283–289, 1979

    Article  CAS  Google Scholar 

  • Henley KS, Schmidt E, Schmidt FW. Serum enzymes. Journal of the American Medical Association 174: 119–123, 1960

    Article  Google Scholar 

  • Herrmann FH, Spiegler AW. Carrier detection in X-linked Becker muscular dystrophy by muscle provocation test (MPT). Journal of Neurological Sciences 62: 141–146, 1983

    Article  CAS  Google Scholar 

  • Highman B, Altland PD. Serum enzyme rise after hypoxia and effect of autonomic blockade. Journal of Applied Physiology 199: 981–986, 1960

    CAS  Google Scholar 

  • Holly RG, Barnard RJ, Rosenthal M, Applegate E, Pritikin N. Triathlete characterization and response to prolonged strenuous competition. Medicine and Science in Sports and Exercise 18: 123–127, 1986

    PubMed  CAS  Google Scholar 

  • Hughes RC, Park DC, Parsons ME, O’Brien MD. Serum creatine kinase studies in the detection of carriers of Duchenne dystrophy. Journal of Neurology, Neurosurgery and Psychiatry 34: 527–530, 1971

    Article  CAS  Google Scholar 

  • Hunter JB, Critz JB. Effect of training on plasma enzyme levels in man. Journal of Applied Physiology 31: 20–23, 1971

    PubMed  CAS  Google Scholar 

  • Israel S, Scheibe J, Kohler E, Stumpe H. Enzymaktivitaten im serum nach einem 88-km-lauf. Medizin und Sport 16: 363–367, 1976

    Google Scholar 

  • Jaffe AS, Garfinkel BT, Ritter CS, Sobel BE. Plasma MB creatine kinase after vigorous exercise in professional athletes. American Journal of Cardiology 53: 856–858, 1984

    Article  PubMed  CAS  Google Scholar 

  • Jansson E, Sylven C. Creatine kinase MB and citrate synthase in type I and type II muscle fibres in trained and untrained men. European Journal of Applied Physiology 54: 207–209, 1985

    Article  CAS  Google Scholar 

  • Jardon OM. Physiologic stress, heat stroke, malignant hyperthermia — a perspective. Military Medicine 147: 8–14, 1982

    PubMed  CAS  Google Scholar 

  • Jonderko G, Gabryel A, Jonderko K, Ko’nca A, Marcisz C, Olak Z, et al. The influence of noise and vibration upon creatine kinase activity in blood serum. International Archives of Occupational and Environmental Health 49: 209–212, 1982

    Article  PubMed  CAS  Google Scholar 

  • Kaman RL, Goheen B, Patton R, Raven P. The effects of near maximum exercise on serum enzymes: the exercise profile versus the cardiac profile. Clinica Chimica Acta 81: 145–152, 1977

    Article  CAS  Google Scholar 

  • Kanter MM, Kaminsky LA, Laham-Saeger J, Lesmes GR, Nequin ND. Serum enzyme levels and lipid peroxidation in ultramarathon runners. Annals of Sports Medicine 3: 39–41, 1986

    CAS  Google Scholar 

  • Karlsson J, Diamant B, Saltin B. Lactate dehydrogenase activity in muscle after prolonged severe exercise in man. Journal of Applied Physiology 25: 88–91, 1968

    PubMed  CAS  Google Scholar 

  • Karmen A, Wroblewski F, La Due JS. Transaminase activity in human blood. Journal of Clinical Investigation 34: 126–134, 1955

    Article  PubMed  CAS  Google Scholar 

  • Kettunen P, Kala R, Rehunen S. Creatine kinase and its isoenzymes in skeletal muscle of athletes. Lancet 2: 611, 1982

    Article  PubMed  CAS  Google Scholar 

  • Kew MC, Bersohn I, Peter J, Wyndham CH, Seftel HC. Preliminary observations on the serum and cerebrospinal fluid enzymes in heatstroke. South African Medical Journal 41: 530–532, 1967

    PubMed  CAS  Google Scholar 

  • Kew M, Bersohn I, Seftel H. The diagnostic and prognostic significance of the serum enzyme changes in heatstroke. Transactions of the Royal Society of Tropical Medicine and Hygiene 65: 325–330, 1971

    Article  PubMed  CAS  Google Scholar 

  • Kielblock AJ, Manjoo M, Booyens J, Katzeff IE. Creatine phosphokinase and lactate dehydrogenase levels after ultra long-distance running. South African Medical Journal 55: 1061–1064, 1979

    PubMed  CAS  Google Scholar 

  • King SW, Statland BE, Savory J. The effect of a short burst of exercise on activity values of enzymes in sera of healthy young men. Clinica Chimica Acta 72: 211–218, 1976

    Article  CAS  Google Scholar 

  • Konagaya M, Takayanagi T, Konagaya Y, Sobue I. The fluctuation of serum myoglobin levels in Duchenne muscular dystrophy and the carrier. Journal of Neurological Sciences 55: 259–265, 1982

    Article  CAS  Google Scholar 

  • Kosano H, Kinoshita T, Nagata N, Takatani O, Isobe M, et al. Change in concentrations of myogenic components of serum during 93h of strenuous physical exercise. Clinical Chemistry 32: 346–348, 1986

    PubMed  CAS  Google Scholar 

  • Kuby SA, Noda L, Lardy HA. Adenosine triphosphate creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. Journal of Biological Chemistry 209: 191–201, 1954

    PubMed  CAS  Google Scholar 

  • Kuipers H, Keizer HA, Verstappen FT, Costill DL. Influence of a prostaglandin-inhibiting drug on muscle soreness after eccentric work. International Journal of Sports Medicine 6: 336–339, 1985

    Article  PubMed  CAS  Google Scholar 

  • LaDue JS, Wroblewski F, Karmen A. Serum glutamic oxalacetic transaminase activity in human acute transmural myocardial infarction. Science 120: 497–499, 1954

    Article  PubMed  CAS  Google Scholar 

  • La Porta MA, Linde HW, Bruce DL, Fitzsimons EJ. Elevation of creatine phosphokinase in young men after recreational exercise. Journal of the American Medical Association 239: 2685–2686, 1978

    Article  Google Scholar 

  • Liesen H, Dufaux B, Hollmann W. Modifications of serum glycoproteins the days following a prolonged physical exercise and the influence of physical training. European Journal of Applied Physiology 37: 243–254, 1977

    Article  CAS  Google Scholar 

  • Lijnen P, Hespel P, Van Oppens S, Fiocchi R, Goossens W, et al. Erythrocyte 2, 3 diphosphoglycerate and serum enzyme concentrations in trained and sedentary men. Medicine and Science in Sports and Exercise 18: 174–179, 1986

    PubMed  CAS  Google Scholar 

  • Loll H, Hilscher A. Die bedeutung der serum-enzym-und substrat-bestimmungen bei lebererkankungen. Arztliche Forschung 12: 304–308, 1958

    CAS  Google Scholar 

  • Maclean D, Griffiths PD, Emslie-Smith D. Serum-enzymes in relation to electrocardiographic changes in accidental hypothermia. Lancet 2: 1266–1271, 1968

    Article  PubMed  CAS  Google Scholar 

  • MacSearraigh ETM, Kallmeyer JC, Schiff HB. Acute renal failure in marathon runners. Nephron 24: 236–240, 1979

    Article  PubMed  CAS  Google Scholar 

  • Magazanik A, Shapiro Y, Meytes D, Meytes I. Enzyme blood levels and water balance during a marathon race. Journal of Applied Physiology 36: 214–217, 1974

    PubMed  CAS  Google Scholar 

  • Matin P, Lang G, Carretta R, Simon G. Scintigraphic evaluation of muscle damage following extreme exercise: concise communication. Journal of Nuclear Medicine 24: 308–311, 1983

    PubMed  CAS  Google Scholar 

  • Maxwell JH, Bloor CM. Effects of conditioning on exertional rhabdomyolysis and serum creatine kinase after severe exercise. Enzyme 26: 177–181, 1981

    PubMed  CAS  Google Scholar 

  • McKechnie JK, Leary WP, Joubert SM. Some electrocardiographic and biochemical changes recorded in marathon runners. South African Medical Journal 41: 722–725, 1967

    PubMed  CAS  Google Scholar 

  • Meltzer HY. Factors affecting serum creatine phosphokinase levels in the general population: the role of race, activity and sex. Clinica Chimica Acta 33: 165–172, 1971

    Article  CAS  Google Scholar 

  • Meltzer HY, Holy PA. Black-White differences in serum creatine phosphokinase activity induced by exercise. Clinica Chimica Acta 54: 215–224, 1974

    Article  CAS  Google Scholar 

  • Metrier G, Poortmans J, Vanroux R, Gauthier R. Serum glutamic oxaloacetic acid transaminase changes during exercise of various intensities in trained athletes. Journal of Sports Medicine and Physical Fitness 20: 152–157, 1980.

    Google Scholar 

  • Millard M, Zauner C, Cade R, Reese R. Serum CPK levels in male and female world class swimmers during a season of training. Journal of Swimming Research 1: 12–16, 1985

    Google Scholar 

  • Misner JE, Massey BH, Williams BT. The effect of physical training on the response of serum enzymes to exercise stress. Medicine and Science in Sports 5: 86–88, 1973

    PubMed  CAS  Google Scholar 

  • Munjal DD, McFadden JA, Matix PA, Coffman KD, Cattaneo SM. Changes in serum myoglobin, total creatine kinase, lactate dehydrogenase and creatine kinase MB levels in runners. Clinical Biochemistry 16: 195–199, 1983

    Article  PubMed  CAS  Google Scholar 

  • Newham DJ, Jones DA, Edwards RHT. Large delayed plasma creatine kinase changes after stepping exercise. Muscle and Nerve 6: 380–385, 1983

    Article  PubMed  CAS  Google Scholar 

  • Newham DJ, Jones DA, Edwards RHT. Plasma creatine kinase changes after eccentric and concentric contractions. Muscle and Nerve 9: 59–63, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson GA, McLeod JG, Morgan G, Meerkin M, Cowan J, et al. Variable distributions of serum creatine kinase reference values: relationship to exercise activity. Journal of Neurological Sciences 71: 225–231, 1985a

    Article  CAS  Google Scholar 

  • Nicholson GA, Morgan G, Meerkin M, Strauss E, McLeod JG. The creatine kinase reference interval: an assessment of intra-and inter-individual variation. Journal of Neurological Sciences 71: 233–245, 1985b

    Article  CAS  Google Scholar 

  • Noakes TD. Lore of running, Oxford University Press, Cape Town, 1986

    Google Scholar 

  • Noakes TD, Carter JW. Biochemical parameters in athletes before and after having run 160 kilometres. South African Medical Journal 50: 1562–1566, 1976

    PubMed  CAS  Google Scholar 

  • Noakes TD, Carter JW. The responses of plasma biochemical parameters to a 56-km race in novice and experienced ultra-marathon runners. European Journal of Applied Physiology 49: 179–186, 1982

    Article  CAS  Google Scholar 

  • Noakes TD, Kotzenberg G, McArthur PS, Dykman J. Elevated serum creatine kinase MB and creatine kinase BB-isoenzyme fractions after ultra-marathon running. European Journal of Applied Physiology 52: 75–79, 1983

    Article  CAS  Google Scholar 

  • Norregaard Hansen K, Bjerre-Knudsen J, Brodthagen U, Jordal R, Paulev P-E. Muscle cell leakage due to long distance training. European Journal of Applied Physiology 48: 177–188, 1982

    Article  Google Scholar 

  • Nowacki PE, Kustner W, Haag H. The influence of exhaustive efforts at high altitude (2040m) on serum enzymes (CPK, CPK act., LDH, SGOT, SGPT) in well trained athletes. In Howald & Poortmans (Eds) Metabolic adaptation to prolonged physical exercise, Proceedings of the 2nd International Symposium on Biochemistry of Exercise, Magglingen, pp. 78–84, Birkhäuser Verlag, Basel, 1973.

    Google Scholar 

  • Nuttall FQ, Jones B. Creatine kinase and glutamic oxalacetic transaminase activity in serum: kinetics of change with exercise and effect of physical conditioning. Journal of Laboratory and Clinical Medicine 71: 847–854, 1968

    PubMed  CAS  Google Scholar 

  • Nydick I, Wroblewski F, LaDue JS. Evidence for increased serum glutamic oxalacetic transaminase (SGO-T) activity following graded myocardial infarcts in dogs. Circulation 12: 161–168, 1955

    Article  PubMed  CAS  Google Scholar 

  • Ohman EM, Teo KK, Johnson AH, Collins PB, Dowsett DG, et al. Abnormal cardiac enzyme responses after strenuous exercise: alternative diagnostic aids. British Medical Journal 285: 1523–1526, 1982

    Article  PubMed  CAS  Google Scholar 

  • Okinaka S, Kumagai H, Ebashi S, Sugita H, Momoi H, et al. Serum creatine phosphokinase activity in progressive muscular dystrophy and neuromuscular diseases. Archives of Neurology 4: 64–69, 1961

    Article  Google Scholar 

  • Olerud JE, Homer LD, Carroll HW. Serum myoglobin levels predicted from serum enzyme values. New England Journal of Medicine 293: 483–485, 1975

    Article  PubMed  CAS  Google Scholar 

  • Olerud JE, Homer LD, Carroll HW. Incidence of acute exertional rhabdomyolysis. Archives of Internal Medicine 136: 692–697, 1976

    Article  PubMed  CAS  Google Scholar 

  • Olivier LR, De Waal A, Retief FJ, Marx JD, Kriel JR, et al. Electrocardiographic and biochemical studies on marathon runners. South African Medical Journal 53: 783–788, 1978

    PubMed  CAS  Google Scholar 

  • Osterman PO, Ashmark H, Wistrand PJ. Serum carbonic anhydrase III in neuromuscular disorders and in healthy persons after a long-distance run. Journal of Neurological Sciences 70: 347–357, 1985

    Article  CAS  Google Scholar 

  • Phillips J, Horner B, Ohman M, Horgan J. Increased brain-type creatine phosphokinase in marathon runners. Lancet 1: 1310, 1982

    Article  PubMed  CAS  Google Scholar 

  • Pohl AP, O’Halloran MW, Pannall PR. Biochemical and physiological changes in football players. Medical Journal of Australia 1: 467–470, 1981

    PubMed  CAS  Google Scholar 

  • Rasch PJ, Schwartz PL. Effect of amateur wrestling on selected serum enzymes. Journal of Sports Medicine and Physical Fitness 12: 82–86, 1972

    PubMed  CAS  Google Scholar 

  • Refsum HE, Stromme SB, Tveit B. Changes in serum enzyme levels after 90 km cross-country skiing. Acta Physiologica Scandinavica 84: 16A–17A, 1971

    Google Scholar 

  • Reinhardt WH, Straubli M, Kochli HP, Straub PW. Creatine kinase and MB-fraction after a long distance race. Clinica Chimica Acta 125: 307–310, 1982

    Article  Google Scholar 

  • Remmers AR, Kaljot V. Serum transaminase levels. Journal of the American Medical Association 185: 148–150, 1963

    Article  Google Scholar 

  • Richter K, Konitzer K. Veranderungen der Aldolase-Activitat im Blutserum bei Muskelarbeit. Klinic Wochschrafft 38: 998, 1960

    Article  CAS  Google Scholar 

  • Riley WJ, Pyke FS, Roberts AD, England JF. The effect of long-distance running on some biochemical variables. Clinica Chimica Acta 65: 83–89, 1975

    Article  CAS  Google Scholar 

  • Ritter WS, Stone MJ, Willerson JT. Reduction in exertional myoglobinemia after physical conditioning. Archives of Internal Medicine 139: 644–647, 1979

    Article  PubMed  CAS  Google Scholar 

  • Robinson D, Williams PT, Worthington DJ, Carter TJN. Raised creatine kinase activity and presence of creatine kinase MB isoenzyme after exercise. British Medical Journal 285: 1619–1620, 1982

    Article  PubMed  CAS  Google Scholar 

  • Rogers MA, Stull GA, Apple FS. Creatine kinase isoenzyme activities in men and women following a marathon race. Medicine and Science in Sports and Exercise 17: 679–682, 1985

    Article  PubMed  CAS  Google Scholar 

  • Rose LI, Bousser JE, Cooper KH. Serum enzymes after marathon running. Journal of Applied Physiology 29: 355–357, 1970a

    PubMed  CAS  Google Scholar 

  • Rose LI, Lowe SL, Carroll DR, Wolfson S, Cooper KH. Serum lactate dehydrogenase isoenzyme changes after muscular exertion. Journal of Applied Physiology 28: 279–281, 1970b

    PubMed  CAS  Google Scholar 

  • Ross JH, Attwood EC, Atkin GE, Villar RN. A study on the effects of severe repetitive exercise on serum myoglobin, creatine kinase, transaminases and lactate dehydrogenase. Quarterly Journal of Medicine 206: 268–279, 1983

    Google Scholar 

  • Roli S, Iori E, Guiducci U, Emanuele R, Robuschi G, et al. Serum concentrations of myoglobin, creatine phosphokinase and lactic dehydrogenase after exercise in trained and untrained athletes. Journal of Sports Medicine and Physical Fitness 21: 113–118, 1981.

    Google Scholar 

  • Roxin LE, Venge P, Friman G. Variations in serum myoglobin after a 2-min isokinetic exercise test and the effects of training. European Journal of Applied Physiology 53: 43–47, 1984

    Article  CAS  Google Scholar 

  • Rutledge J, Clayson KJ, Strandjord PE. Effect of physical conditioning on serum creatine kinase after exercise. Journal of the American Medical Association 240: 2633, 1978

    Article  PubMed  CAS  Google Scholar 

  • Sabria M, Ruibal A, Rey C, Foz M, Domenech FM. Influence of exercise on serum levels of myoglobin measured by radioimmunoassay. European Journal of Nuclear Medicine 8: 159–161, 1983

    Article  PubMed  CAS  Google Scholar 

  • Sanders TM, Bloor CM. Effects of endurance on serum enzyme activities in the dog, pig and man. Proceedings of the Society for Experimental Biology and Medicine 148: 823–828, 1975a

    PubMed  CAS  Google Scholar 

  • Sanders TM, Bloor CM. Effects of repeated endurance exercise on serum enzyme activities in well-conditioned males. Medicine and Science in Sports 7: 44–47, 1975b

    PubMed  CAS  Google Scholar 

  • Savignano T, Hanok A, Kuo J. Creatine phosphokinase activity: a study of normal and abnormal levels. American Journal of Clinical Pathology 51: 76–85, 1969

    PubMed  CAS  Google Scholar 

  • Schiff HB, MacSearraigh ETM, Kallmeyer JC. Myoglobinuria, rhabdomyolysis and marathon running. Quarterly Journal of Medicine 188: 463–472, 1978

    CAS  Google Scholar 

  • Schlang HA, Kirkpatrick CA. The effect of physical exercise on serum transaminase. American Journal of Medical Sciences 242: 338–341, 1961

    Article  CAS  Google Scholar 

  • Schmidt E, Schmidt FW. Enzyme modifications during activity. In Biochemistry of exercise, Medicine and sport, Vol. 13, pp. 216–238. J.K. Poortmans (Ed.), Baltimore, 1969

    Google Scholar 

  • Schnohr P. Enzyme concentrations in serum after prolonged physical exercise. Danish Medical Bulletin 21: 68–71, 1974

    PubMed  CAS  Google Scholar 

  • Schnohr P, Grande P, Christiansen C. Enzyme activities in serum after extensive exercise, with special reference to creatine kinase MB. Acta Medica Scandinavica 208: 229–231, 1980

    Article  PubMed  CAS  Google Scholar 

  • Schwane JA, Johnson SR, Vandenakker CB, Armstrong RB. Delayed-onset muscular soreness and plasma CPK and LDH activities after downhill running. Medicine and Science in Sports and Exercise 15: 51–56, 1983

    PubMed  CAS  Google Scholar 

  • Schwartz PL, Carroll HW, Douglas JS. Exercise-induced changes in serum enzyme activities and their relationship to max V02. International Zietschrift fur Angewandte Physiologie Einschliesslich Arbeitphysiologie 30: 20–33, 1971

    CAS  Google Scholar 

  • Scrimgeour AG, Noakes TD, Adams B, Myburgh K. The influence of weekly training distance on fractional ultilization of maximum aerobic capacity in marathon and ultra-marathon runners. European Journal of Applied Physiology 55: 202–209, 1986

    Article  CAS  Google Scholar 

  • Shapiro Y, Magazanik A, Sohar E, Reich CB. Serum enzyme changes in untrained subjects following a prolonged march. Canadian Journal of Physiology and Pharmacology 51: 271–276, 1973

    Article  PubMed  CAS  Google Scholar 

  • Sherman WM, Costill DL, Fink WJ, Miller JM. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. International Journal of Sports Medicine 2: 114–118, 1981

    Article  PubMed  CAS  Google Scholar 

  • Shumate JB, Brooke MH, Carroll JE, Davis JE. Increased serum creatine kinase after exercise: a sex-linked phenomenon. Neurology 29: 902–904, 1979

    Article  PubMed  CAS  Google Scholar 

  • Sibley JA, Lehninger AL. Determination of aldolase in animal tissues. Journal of Biological Chemistry 177: 859–872, 1949

    PubMed  CAS  Google Scholar 

  • Siegel AJ, Silverman LM, Lopez RE. Creatine kinase elevations in marathon runners: relationship to training and competition. Yale Journal of Biology and Medicine 53: 275–279, 1980

    PubMed  CAS  Google Scholar 

  • Siegel AJ, Silverman LM, Holman LB. Elevated creatine kinase MB isoenzyme levels in marathon runners. Journal of the American Medical Association 246: 2049–2051, 1981

    Article  PubMed  CAS  Google Scholar 

  • Siegel AJ, Silverman LM, Evans WJ. Elevated skeletal muscle creatine kinase MB isoenzyme levels in marathon runners. Journal of the American Medical Association 250: 2835–2837, 1983

    Article  PubMed  CAS  Google Scholar 

  • Siegel AJ, Silverman LM, Holman BL. Normal results of post-race Thallium-201 myocardial perfusion imaging in marathon runners with elevated serum MB creatine kinase levels. American Journal of Medicine 79: 431–434, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Sjodin B, Thorstensson A, Frith K, Karlsson J. Effect of physical training on LDH activity and LDH isozyme pattern in human skeletal muscle. Acta Physiologica Scandinavica 97: 150–157, 1976

    Article  PubMed  CAS  Google Scholar 

  • Smith I, Thomson WH. Carrier detection in X-linked recessive (Duchenne) muscular dystrophy: pyruvate kinase isoenzymes and creatine phosphokinase in serum and blood cells. Clinica Chimica Acta 78: 439–451, 1977

    Article  CAS  Google Scholar 

  • Stansbie D, Aston JP, Dallimore NS, Williams HM, Willis N. Effect of exercise on plasma pyruvate kinase and creatine kinase activity. Clinica Chimica Acta 132: 127–132, 1983

    Article  CAS  Google Scholar 

  • Stansbie D, Aston JP, Powell NH, Willis N. Creatine kinase MB in marathon runners. Lancet 1: 1413–1414, 1982

    Article  PubMed  CAS  Google Scholar 

  • Stone MJ, Waterman MR, Harimoto D, Murray G, Willson N, et al. Serum myoglobin level as diagnostic test in patients with acute myocardial infarction. British Heart Journal 39: 375–380, 1977

    Article  PubMed  CAS  Google Scholar 

  • Strachan AF, Noakes TD, Kotzenberg G, Nel AE, De Beer FC. Creactive protein concentrations during long distance running. British Medical Journal 289: 1249–1251, 1984

    Article  PubMed  CAS  Google Scholar 

  • Straubli M, Roessler B, Kochli HP, Peheim E, Straub PW. Creatine kinase and creatine MB in endurance runners and in patients with myocardial infarction. European Journal of Applied Physiology 54: 40–45, 1985

    Article  Google Scholar 

  • Sylven JCH, Jansson E, Brandt S, Kallner A. Specificity of cardiac enzymes in diagnosis of chest pain in marathon runners. Lancet 2: 1505, 1983

    PubMed  CAS  Google Scholar 

  • Symanski JD, McMurray RG, Silverman LM, Smith BW, Siegel AJ. Serum creatine kinase and CK-MB isoenzyme responses to acute and prolonged swimming in trained athletes. Clinica Chimica Acta 129: 181–187, 1983

    Article  CAS  Google Scholar 

  • Thomson WH. Serum enzyme studies in inherited disease of skeletal muscle. Clinica Chimica Acta 35: 183–191, 1971

    Article  CAS  Google Scholar 

  • Thomson WHS, Smith I. Effects of oestrogen on erythrocyte enzyme efflux in normal men and women. Clinica Chimica Acta 103: 203–208, 1980.

    Article  CAS  Google Scholar 

  • Tiidus PM, Ianuzzo CD. Effects of intensity and duration of muscular exercise on delayed soreness and serum enzyme activities. Medicine and Science in Sports and Exercise 15: 461–465, 1983

    PubMed  CAS  Google Scholar 

  • van Rensburg JP, Kielblock AJ, van der Linde A. Physiologic and biochemical changes during a triathlon competition. International Journal of Sports Medicine 7: 30–35, 1986

    Article  PubMed  Google Scholar 

  • Vejjaajiva A, Teasdale GM. Serum creatine kinase and physical exercise. British Medical Journal 1: 1653–1654, 1965

    Article  Google Scholar 

  • Wegmann HM, Bruneer H, Klein KE, Voigt ED. Enzymatic and hormonal responses to exercise, lowered pressure, and acceleration in human plasma and their correlation to individual tolerances. Federation Proceedings 25: 1405–1408, 1966

    PubMed  CAS  Google Scholar 

  • Wolfson S, Rose LI, Bousser JE, Parisi AF, Acosta AE, et al. Serum enzyme levels during exercise in patients with coronary heart disease: effects of training. American Heart Journal 84: 478–483, 1972

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski F, Jervis G, LaDue JS. The diagnostic, prognostic and epidemiologic significance of serum glutamic oxaloacetic transaminase (SGO-T) alterations in acute hepatitis. Annals of Internal Medicine 45: 782–800, 1956

    PubMed  CAS  Google Scholar 

  • Wroblewski F, LaDue JS. Lactic dehydrogenase activity in blood. Proceedings of the Society for Experimental Biology and Medicine 90: 210–213, 1955

    PubMed  CAS  Google Scholar 

  • Wyndham CH, Kew MC, Kok R, Bersohn I, Strydom NB. Serum enzyme changes in unacclimatized and acclimatized men under severe heat stress. Journal of Applied Physiology 37: 695–698, 1974

    PubMed  CAS  Google Scholar 

  • Wyse RKH. Marathon running and creatine kinase levels. Lancet 2: 155, 1982

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noakes, T.D. Effect of Exercise on Serum Enzyme Activities in Humans. Sports Medicine 4, 245–267 (1987). https://doi.org/10.2165/00007256-198704040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198704040-00003

Keywords

Navigation