Skip to main content
Log in

The Influence of Estrogen on Skeletal Muscle

Sex Matters

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

As women enter menopause, the concentration of estrogen and other female hormones declines. This hormonal decrease has been associated with a number of negative outcomes, including a greater incidence of injury as well as a delay in recovery from these injuries. Over the past two decades, our understanding of the protective effects of estrogen against various types of injury and disease states has grown immensely. In skeletal muscle, studies with animals have demonstrated that sex and estrogen may potentially influence muscle contractile properties and attenuate indices of post-exercise muscle damage, including the release of creatine kinase into the bloodstream and activity of the intramuscular lysosomal acid hydrolase, β-glucuronidase. Furthermore, numerous studies have revealed an estrogen-mediated attenuation of infiltration of inflammatory cells such as neutrophils and macrophages into the skeletal muscles of rats following exercise or injury. Estrogen has also been shown to play a significant role in stimulating muscle repair and regenerative processes, including the activation and proliferation of satellite cells. Although the mechanisms by which estrogen exerts its influence upon indices of skeletal muscle damage, inflammation and repair have not been fully elucidated, it is thought that estrogen may potentially exert its protective effects by: (i) acting as an antioxidant, thus limiting oxidative damage; (ii) acting as a membrane stabilizer by intercalating within membrane phospholipids; and (iii) binding to estrogen receptors, thus governing the regulation of a number of downstream genes and molecular targets. In contrast to animal studies, studies with humans have not as clearly delineated an effect of estrogen on muscle contractile function or on indices of post-exercise muscle damage and inflammation. These inconsistencies have been attributed to a number of factors, including age and fitness level of subjects, the type and intensity of exercise protocols, and a focus on sex differences that typically involve factors and hormones in addition to estrogen. In recent years, hormone replacement therapy (HRT) or estrogen combined with exercise have been proposed as potentially therapeutic agents for postmenopausal women, as these agents may potentially limit muscle damage and inflammation and stimulate repair in this population. While the benefits and potential health risks of long-term HRT use have been widely debated, controlled studies using short-term HRT or other estrogen agonists may provide future new and valuable insights into understanding the effects of estrogen on skeletal muscle, and greatly benefit the aging female population. Recent studies with older females have begun to demonstrate their benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
a

Similar content being viewed by others

References

  1. Tiidus PM. Can estrogens diminish exercise induced muscle damage? Can J Appl Physiol 1995; 20: 26–38

    Article  PubMed  CAS  Google Scholar 

  2. Tiidus PM. Oestrogen and sex influence on muscle damage and inflammation: evidence from animal models. Curr Opin Clin Nutr Metab Care 2001; 4: 509–13

    Article  PubMed  CAS  Google Scholar 

  3. Kendall B, Eston R. Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med 2002; 32: 103–23

    Article  PubMed  Google Scholar 

  4. Tiidus PM. Influence of estrogen on skeletal muscle damage, inflammation, and repair. Exerc Sport Sci Rev 2003; 31: 40–4

    Article  PubMed  Google Scholar 

  5. Tiidus PM, Enns DL, Hubal MJ, et al. Point-counterpoint: estrogen and sex do/do not influence post-exercise indices of muscle damage, inflammation and repair. J Appl Physiol 2009; 106: 110–5

    Google Scholar 

  6. Kahlert S, Grohe C, Karas RH, et al. Effects of estrogen on skeletal myoblast growth. Biochem Biophys Res Commun 1997; 232: 373–8

    Article  PubMed  CAS  Google Scholar 

  7. Sipila S, Taaffe DR, Cheng S, et al. Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in post-menopausal women: a randomized placebo-controlled study. Clin Sci (Lond) 2001; 101: 147–57

    Article  CAS  Google Scholar 

  8. Sorensen MB, Rosenfalck AM, Hojgaard L, et al. Obesity and sarcopenia after menopause are reversed by sex hormone replacement therapy. Obes Res 2001; 9: 622–6

    Article  PubMed  CAS  Google Scholar 

  9. Taaffe DR, Sipila S, Cheng S, et al. The effect of hormone replacement therapy and/or exercise on skeletal muscle attenuation in postmenopausal women: a yearlong intervention. Clin Physiol Funct Imaging 2005; 25: 297–304

    Article  PubMed  CAS  Google Scholar 

  10. Teixeira PJ, Going SB, Houtkooper LB, et al. Resistance training in postmenopausal women with and without hormone therapy. Med Sci Sports Exerc 2003; 35: 555–62

    Article  PubMed  Google Scholar 

  11. Ronkainen PH, Kovanen V, Alen M, et al. Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: a study with monozygotic twin pairs. J Appl Physiol 2009; 107: 25–33

    Article  PubMed  CAS  Google Scholar 

  12. Taaffe DR, Newman AB, Haggerty CL, et al. Estrogen replacement, muscle composition, and physical function: the Health ABC study. Med Sci Sports Exerc 2005; 37: 1741–7

    Article  PubMed  CAS  Google Scholar 

  13. Sciote JJ, Horton MJ, Zyman Y, et al. Differential effects of diminished oestrogen and androgen levels on development of skeletal muscle fibres in hypogonadal mice. Acta Physiol Scand 2001; 172: 179–87

    Article  PubMed  CAS  Google Scholar 

  14. Skelton DA, Phillips SK, Bruce SA, et al. Hormone replacement therapy increases isometric muscle strength of adductor pollicis in post-menopausal women. Clin Sci (Lond) 1999; 96: 357–64

    Article  CAS  Google Scholar 

  15. Bemben DA, Langdon DB. Relationship between estrogen use and musculoskeletal function in postmenopausal women. Maturitas 2002; 42: 119–27

    Article  PubMed  CAS  Google Scholar 

  16. Brown M, Birge SJ, Kohrt WM. Hormone replacement therapy does not augment gains in muscle strength or fatfree mass in response to weight-bearing exercise. J Gerontol A Biol Sci Med Sci 1997; 52: B166–70

    Article  Google Scholar 

  17. Bassey EJ, Mockett SP, Fentem PH. Lack of variation in muscle strength with menstrual status in healthy women aged 45-54 years: data from a national survey. Eur J Appl Physiol Occup Physiol 1996; 73: 382–6

    Article  PubMed  CAS  Google Scholar 

  18. Taaffe DR, Luz VM, Delay R, et al. Maximal muscle strength of elderly women is not influenced by oestrogen status. Age Ageing 1995; 24: 329–33

    Article  PubMed  CAS  Google Scholar 

  19. Maddalozzo GF, Cardinal BJ, Li F, et al. The association between hormone therapy use and changes in strength and body composition in early postmenopausal women. Menopause 2004; 11: 438–46

    Article  PubMed  Google Scholar 

  20. McCormick KM, Burns KL, Piccone CM, et al. Effects of ovariectomy and estrogen on skeletal muscle function in growing rats. J Muscle Res Cell Motil 2004; 25: 21–7

    Article  PubMed  CAS  Google Scholar 

  21. Schneider BS, Fine JP, Nadolski T, et al. The effects of estradiol and progesterone on plantarflexor muscle fatigue in ovariectomized mice. Biol Res Nurs 2004; 5: 265–75

    Article  PubMed  Google Scholar 

  22. Hatae J. Effects of 17beta-estradiol on tension responses and fatigue in the skeletal twitch muscle fibers of frog. Jpn J Physiol 2001; 51: 753–9

    Article  PubMed  CAS  Google Scholar 

  23. Moran AL, Warren GL, Lowe DA. Removal of ovarian hormones from mature mice detrimentally affects muscle contractile function and myosin structural distribution. J Appl Physiol 2006; 100: 548–59

    Article  PubMed  CAS  Google Scholar 

  24. Wattanapermpool J, Reiser PJ. Differential effects of ovariectomy on calcium activation of cardiac and soleus myofilaments. Am J Physiol 1999; 277: H467–73

    Google Scholar 

  25. Warren GL, Lowe DA, Inman CL, et al. Estradiol effect on anterior crural muscles-tibial bone relationship and susceptibility to injury. J Appl Physiol 1996; 80: 1660–5

    PubMed  CAS  Google Scholar 

  26. Moran AL, Nelson SA, Landisch RM, et al. Estradiol replacement reverses ovariectomy-induced muscle contractile and myosin dysfunction in mature female mice. J Appl Physiol 2007; 102: 1387–93

    Article  PubMed  CAS  Google Scholar 

  27. Clark BC, Manini TM, The DJ, et al. Gender differences in skeletal muscle fatigability are related to contraction type and EMG spectral compression. J Appl Physiol 2003; 94: 2263–72

    PubMed  Google Scholar 

  28. Fulco CS, Rock PB, Muza SR, et al. Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol Scand 1999; 167: 233–9

    Article  PubMed  CAS  Google Scholar 

  29. Hunter SK, Critchlow A, Shin IS, et al. Men are more fatigable than strength-matched women when performing intermittent submaximal contractions. J Appl Physiol 2004; 96: 2125–32

    Article  PubMed  Google Scholar 

  30. Maughan RJ, Harmon M, Leiper JB, et al. Endurance capacity of untrained males and females in isometric and dynamic muscular contractions. Eur J Appl Physiol Occup Physiol 1986; 55: 395–400

    Article  PubMed  CAS  Google Scholar 

  31. Petrofsky JS, Burse RL, Lind AR. Comparison of physiological responses of women and men to isometric exercise. J Appl Physiol 1975; 38: 863–8

    PubMed  CAS  Google Scholar 

  32. Phillips SK, Rook KM, Siddle NC, et al. Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci (Lond) 1993; 84: 95–8

    CAS  Google Scholar 

  33. Sipila S, Poutamo J. Muscle performance, sex hormones and training in peri-menopausal and post-menopausal women. Scand J Med Sci Sports 2003; 13: 19–25

    Article  PubMed  CAS  Google Scholar 

  34. Greeves JP, Cable NT, Luckas MJ, et al. Effects of acute changes in oestrogen on muscle function of the first dorsal interosseus muscle in humans. J Physiol 1997; 500 (Pt 1): 265–70

    PubMed  CAS  Google Scholar 

  35. Onambele NG, Skelton DA, Bruce SA, et al. Follow-up study of the benefits of hormone replacement therapy on isometric muscle strength of adductor pollicis in postmenopausal women. Clin Sci (Lond) 2001; 100: 421–2

    Article  CAS  Google Scholar 

  36. Greeves JP, Cable NT, Reilly T, et al. Changes in muscle strength in women following the menopause: a longitudinal assessment of the efficacy of hormone replacement therapy. Clin Sci (Lond) 1999; 97: 79–84

    Article  CAS  Google Scholar 

  37. Phillips SK, Sanderson AG, Birch K, et al. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J Physiol 1996; 496 (Pt 2): 551–7

    PubMed  CAS  Google Scholar 

  38. Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol 1996; 493 (Pt 1): 267–72

    PubMed  CAS  Google Scholar 

  39. Suzuki S, Yamamuro T. Long-term effects of estrogen on rat skeletal muscle. Exp Neurol 1985; 87: 291–9

    Article  PubMed  CAS  Google Scholar 

  40. Carville SF, Rutherford OM, Newham DJ. Power output, isometric strength and steadiness in the leg muscles of preand postmenopausal women: the effects of hormone replacement therapy. Eur J Appl Physiol 2006; 96: 292–8

    Article  PubMed  CAS  Google Scholar 

  41. Sotiriadou S, Kyparos A, Albani M, et al. Soleus muscle force following downhill running in ovariectomized rats treated with estrogen. Appl Physiol Nutr Metab 2006; 31: 449–59

    Article  PubMed  CAS  Google Scholar 

  42. Tiidus PM, Bestic NM, Tupling R. Estrogen and gender do not affect fatigue resistance of extensor digitorum longus muscle in rats. Physiol Res 1999; 48: 209–13

    PubMed  CAS  Google Scholar 

  43. Hubal MJ, Ingalls CP, Allen MR, et al. Effects of eccentric exercise training on cortical bone and muscle strength in the estrogen-deficient mouse. J Appl Physiol 2005; 98: 1674–81

    Article  PubMed  CAS  Google Scholar 

  44. Hubal MJ, Rubinstein SR, Clarkson PM. Muscle function in men and women during maximal eccentric exercise. J Strength Cond Res 2008; 22: 1332–8

    Article  PubMed  Google Scholar 

  45. MacIntyre DL, Reid WD, Lyster DM, et al. Different effects of strenuous eccentric exercise on the accumulation of neutrophils in muscle in women and men. Eur J Appl Physiol 2000; 81: 47–53

    Article  PubMed  CAS  Google Scholar 

  46. Rinard J, Clarkson PM, Smith LL, et al. Response of males and females to high-force eccentric exercise. J Sports Sci 2000; 18: 229–36

    Article  PubMed  CAS  Google Scholar 

  47. Seeley DG, Cauley JA, Grady D, et al. Is postmenopausal estrogen therapy associated with neuromuscular function or falling in elderly women? Study of the Osteoporotic Fractures Research Group. Arch Intern Med 1995; 155: 293–9

    Article  PubMed  CAS  Google Scholar 

  48. Uusi-Rasi K, Beck TJ, Sievanen H, et al. Associations of hormone replacement therapy with bone structure and physical performance among postmenopausal women. Bone 2003; 32: 704–10

    Article  PubMed  CAS  Google Scholar 

  49. Ribom EL, Piehl-Aulin K, Ljunghall S, et al. Six months of hormone replacement therapy does not influence muscle strength in postmenopausal women. Maturitas 2002; 42: 225–31

    Article  PubMed  CAS  Google Scholar 

  50. Kent-Braun JA, Ng AV. Specific strength and voluntary muscle activation in young and elderly women and men. J Appl Physiol 1999; 87: 22–9

    PubMed  CAS  Google Scholar 

  51. Armstrong AL, Oborne J, Coupland CA, et al. Effects of hormone replacement therapy on muscle performance and balance in post-menopausal women. Clin Sci (Lond) 1996; 91: 685–90

    CAS  Google Scholar 

  52. Preisinger E, Alacamlioglu Y, Saradeth T, et al. Forearm bone density and grip strength in women after menopause, with and without estrogen replacement therapy. Maturitas 1995; 21: 57–63

    Article  PubMed  CAS  Google Scholar 

  53. Harman SM, Blackman MR. The effects of growth hormone and sex steroid on lean body mass, fat mass, muscle strength, cardiovascular endurance and adverse events in healthy elderly women and men. Horm Res 2003; 60: 121–4

    Article  PubMed  CAS  Google Scholar 

  54. Elliott KJ, Cable NT, Reilly T, et al. Effect of menstrual cycle phase on the concentration of bioavailable 17-beta oestradiol and testosterone and muscle strength. Clin Sci (Lond) 2003; 105: 663–9

    Article  CAS  Google Scholar 

  55. Stupka N, Lowther S, Chorneyko K, et al. Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol 2000; 89: 2325–32

    PubMed  CAS  Google Scholar 

  56. Clarkson PM, Hubal MJ. Are women less susceptible to exercise-induced muscle damage? Curr Opin Clin Nutr Metab Care 2001; 4: 527–31

    Article  PubMed  CAS  Google Scholar 

  57. Kerksick C, Taylor L, Harvey A, et al. Gender-related differences in muscle injury, oxidative stress, and apoptosis. Med Sci Sports Exerc 2008; 40: 1772–80

    Article  PubMed  CAS  Google Scholar 

  58. Feng X, Li GZ, Wang S. Effects of estrogen on gastrocnemius muscle strain injury and regeneration in female rats. Acta Pharmacol Sin 2004; 25: 1489–94

    PubMed  CAS  Google Scholar 

  59. Amelink GJ, Bar PR. Exercise-induced muscle protein leakage in the rat: effects of hormonal manipulation. J Neurol Sci 1986; 76: 61–8

    Article  PubMed  CAS  Google Scholar 

  60. Bar PR, Amelink GJ, Oldenburg B, et al. Prevention of exercise-induced muscle membrane damage by oestradiol. Life Sci 1988; 42: 2677–81

    Article  PubMed  CAS  Google Scholar 

  61. Amelink GJ, Koot RW, Erich WB, et al. Sex-linked variation in creatine kinase release, and its dependence on oestradiol, can be demonstrated in an in-vitro rat skeletal muscle preparation. Acta Physiol Scand 1990; 138: 115–24

    Article  PubMed  CAS  Google Scholar 

  62. Persky AM, Green PS, Stubley L, et al. Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc Soc Exp Biol Med 2000; 223: 59–66

    Article  PubMed  CAS  Google Scholar 

  63. Tiidus PM, Holden D, Bombardier E, et al. Estrogen effect on post-exercise skeletal muscle neutrophil infiltration and calpain activity. Can J Physiol Pharmacol 2001; 79: 400–6

    Article  PubMed  CAS  Google Scholar 

  64. Sewright KA, Hubal MJ, Kearns A, et al. Sex differences in response to maximal eccentric exercise. Med Sci Sports Exerc 2008; 40: 242–51

    Article  PubMed  Google Scholar 

  65. Carter A, Dobridge J, Hackney AC. Influence of estrogen on markers of muscle tissue damage following eccentric exercise. Fiziol Cheloveka 2001; 27: 133–7

    PubMed  CAS  Google Scholar 

  66. Dieli-Conwright CM, Spektor TM, Rice JC, et al. Hormone replacement therapy attenuates exercise-induced muscle damage in postmenopausal women. J Appl Physiol 2009; 107: 853–8

    Article  PubMed  CAS  Google Scholar 

  67. McClung JM, Davis JM, Carson JA. Ovarian hormone status and skeletal muscle inflammation during recovery from disuse in rats. Exp Physiol 2007; 92: 219–32

    Article  PubMed  CAS  Google Scholar 

  68. Stupka N, Tiidus PM. Effects of ovariectomy and estrogen on ischemia-reperfusion injury in hindlimbs of female rats. J Appl Physiol 2001; 91: 1828–35

    PubMed  CAS  Google Scholar 

  69. Komulainen J, Koskinen SO, Kalliokoski R, et al. Gender differences in skeletal muscle fibre damage after eccentrically biased downhill running in rats. Acta Physiol Scand 1999; 165: 57–63

    Article  PubMed  CAS  Google Scholar 

  70. Enns DL, Tiidus PM. Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol 2008; 104: 347–53

    Article  PubMed  Google Scholar 

  71. Enns DL, Iqbal S, Tiidus PM. Oestrogen receptors mediate oestrogen-induced increases in post-exercise rat skeletal muscle satellite cells. Acta Physiol (Oxf) 2008; 194: 81–93

    Article  CAS  Google Scholar 

  72. St Pierre Schneider B, Correia LA, Cannon JG. Sex differences in leukocyte invasion in injured murine skeletal muscle. Res Nurs Health 1999; 22: 243–50

    Article  PubMed  CAS  Google Scholar 

  73. Tiidus PM, Deller M, Liu XL. Oestrogen influence on myogenic satellite cells following downhill running in male rats: a preliminary study. Acta Physiol Scand 2005; 184: 67–72

    Article  PubMed  CAS  Google Scholar 

  74. Tiidus PM, Bombardier E. Oestrogen attenuates post-exercise myeloperoxidase activity in skeletal muscle of male rats. Acta Physiol Scand 1999; 166: 85–90

    Article  PubMed  CAS  Google Scholar 

  75. Iqbal S, Thomas A, Bunyan K, et al. Progesterone and estrogen influence post-exercise leukocyte infiltration in ovariectomized female rats. Appl Physiol Nutr Met 2008; 33: 1207–12

    Article  CAS  Google Scholar 

  76. McClung JM, Davis JM, Wilson MA, et al. Estrogen status and skeletal muscle recovery from disuse atrophy. J Appl Physiol 2006; 100: 2012–23

    Article  PubMed  CAS  Google Scholar 

  77. Salimena MC, Lagrota-Candido J, Quirico-Santos T. Gender dimorphism influences extracellular matrix expression and regeneration of muscular tissue in mdx dystrophic mice. Histochem Cell Biol 2004; 122: 435–44

    Article  PubMed  CAS  Google Scholar 

  78. Roth SM, Martel GF, Ivey FM, et al. Skeletal muscle satellite cell characteristics in young and older men and women after heavy resistance strength training. J Gerontol A Biol Sci Med Sci 2001; 56: B240–7

    Article  Google Scholar 

  79. Heldring N, Pike A, Andersson S, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev 2007; 87: 905–31

    Article  PubMed  CAS  Google Scholar 

  80. Katzenellenbogen BS, Montano MM, Le Goff P, et al. Antiestrogens: mechanisms and actions in target cells. J Steroid Biochem Mol Biol 1995; 53: 387–93

    Article  PubMed  CAS  Google Scholar 

  81. Gruber DM, Huber JC. Conjugated estrogens: the natural SERMs. Gynecol Endocrinol 1999; 13 Suppl. 6: 9–12

    Google Scholar 

  82. Harada H, Pavlick KP, Hines IN, et al. Selected contribution: effects of gender on reduced-size liver ischemia and reperfusion injury. J Appl Physiol 2001; 91: 2816–22

    PubMed  CAS  Google Scholar 

  83. Sribnick EA, Ray SK, Banik NL. Estrogen as a multiactive neuroprotective agent in traumatic injuries. Neurochem Res 2004; 29: 2007–14

    Article  PubMed  CAS  Google Scholar 

  84. Ashcroft GS, Greenwell-Wild T, Horan MA, et al. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol 1999; 155: 1137–46

    Article  PubMed  CAS  Google Scholar 

  85. Milne KJ, Noble EG. Response of the myocardium to exercise: sex-specific regulation of hsp70. Med Sci Sports Exerc 2008; 40: 655–63

    Article  PubMed  CAS  Google Scholar 

  86. Booth EA, Flint RR, Lucas KL, et al. Estrogen protects the heart from ischemia-reperfusion injury via COX-2- derived PGI2. J Cardiovasc Pharmacol 2008; 52: 228–35

    Article  PubMed  CAS  Google Scholar 

  87. Versi E. Oestrogen and protection against myocardial ischaemia [letter]. Lancet 1993; 342: 871

    Article  PubMed  CAS  Google Scholar 

  88. Kolodgie FD, Farb A, Litovsky SH, et al. Myocardial protection of contractile function after global ischemia by physiologic estrogen replacement in the ovariectomized rat. J Mol Cell Cardiol 1997; 29: 2403–14

    Article  PubMed  CAS  Google Scholar 

  89. Node K, Kitakaze M, Kosaka H, et al. Amelioration of ischemia-and reperfusion-induced myocardial injury by 17beta-estradiol. Circulation 1997; 96: 1953–63

    Article  PubMed  CAS  Google Scholar 

  90. Delyani JA, Murohara T, Nossuli TO, et al. Protection frommyocardial reperfusion injury by acute administration of 17 beta-estradiol. J Mol Cell Cardiol 1996; 28: 1001–8

    Article  PubMed  CAS  Google Scholar 

  91. Subbiah MT, Kessel B, Agrawal M, et al. Antioxidant potential of specific estrogens on lipid peroxidation. J Clin Endocrinol Metab 1993; 77: 1095–7

    Article  PubMed  CAS  Google Scholar 

  92. Sugioka K, Shimosegawa Y, Nakano M. Estrogens as natural antioxidants of membrane phospholipid peroxidation. FEBS Lett 1987; 210: 37–9

    Article  PubMed  CAS  Google Scholar 

  93. Strehlow K, Rotter S, Wassmann S, et al. Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 2003; 93: 170–7

    Article  PubMed  CAS  Google Scholar 

  94. Whiting KP, Restall CJ, Brain PF. Steroid hormoneinduced effects on membrane fluidity and their potential roles in non-genomic mechanisms. Life Sci 2000; 67: 743–57

    Article  PubMed  CAS  Google Scholar 

  95. Patten RD, Pourati I, Aronovitz MJ, et al. 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res 2004; 95: 692–9

    Article  PubMed  CAS  Google Scholar 

  96. Kadi F, Karlsson C, Larsson B, et al. The effects of physical activity and estrogen treatment on rat fast and slow skeletal muscles following ovariectomy. J Muscle Res Cell Motil 2002; 23: 335–9

    Article  PubMed  CAS  Google Scholar 

  97. Dieli-Conwright CM, Spektor TM, Rice JC, et al. Influence of hormone replacement therapy on eccentric exercise induced myogenic gene expression in postmenopausal women. J Appl Physiol 2009; 107: 1381–8

    Article  PubMed  CAS  Google Scholar 

  98. Onambele-Pearson, GL. HRT affects skeletal muscle contractile characteristics: a definitive answer? J Appl Physiol 2009; 107: 4–5

    Article  PubMed  CAS  Google Scholar 

  99. Friden J, Sjostrom M, Ekblom B. A morphological study of delayed muscle soreness. Experientia 1981; 37: 506–7

    Article  PubMed  CAS  Google Scholar 

  100. Jones DA, Newham DJ, Round JM, et al. Experimental human muscle damage:morphological changes in relation to other indices of damage. J Physiol 1986; 375: 435–48

    PubMed  CAS  Google Scholar 

  101. Newham DJ, McPhail G, Mills KR, et al. Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci 1983; 61: 109–22

    Article  PubMed  CAS  Google Scholar 

  102. Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 1992; 24: 512–20

    PubMed  CAS  Google Scholar 

  103. Armstrong RB, Warren GL, Warren JA. Mechanisms of exercise-induced muscle fibre injury. Sports Med 1991; 12: 184–207

    Article  PubMed  CAS  Google Scholar 

  104. Vierck J, O’Reilly B, Hossner K, et al. Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int 2000; 24: 263–72

    Article  PubMed  CAS  Google Scholar 

  105. Warren GL, O’farrell L, Rogers KR, et al. CK-MM autoantibodies: prevalence, immune complexes, and effect on CK clearance. Muscle Nerve 2006; 34: 335–46

    Article  PubMed  CAS  Google Scholar 

  106. Hyatt JP, Clarkson PM. Creatine kinase release and clearance using MM variants following repeated bouts of eccentric exercise.Med Sci Sports Exerc 1998; 30: 1059–65

    Article  PubMed  CAS  Google Scholar 

  107. Kasperek GJ, Snider RD. The susceptibility to exerciseinduced muscle damage increases as rats grow larger. Experientia 1985; 41: 616–7

    Article  PubMed  CAS  Google Scholar 

  108. Lightfoot JT. Sex hormones’ regulation of rodent physical activity: a review. Int J Biol Sci 2008; 4: 126–32

    Article  PubMed  CAS  Google Scholar 

  109. Paroo Z, Dipchand ES, Noble EG. Estrogen attenuates postexercise HSP70 expression in skeletal muscle. Am J Physiol Cell Physiol 2002; 282: C245–51

    Google Scholar 

  110. Tiidus PM, Bombardier E, Hidiroglou N, et al. Estrogen administration, postexercise tissue oxidative stress and vitamin C status in male rats. Can J Physiol Pharmacol 1998; 76: 952–60

    Article  PubMed  CAS  Google Scholar 

  111. Tiidus PM, Bombardier E, Seaman C, et al. Vitamin C and vitamin E status in guinea pig tissues following estrogen administration. Nutr Res 1999; 19: 773–82

    Article  CAS  Google Scholar 

  112. Dernbach AR, Sherman WM, Simonsen JC, et al. No evidence of oxidant stress during high-intensity rowing training. J Appl Physiol 1993; 74: 2140–5

    Article  PubMed  CAS  Google Scholar 

  113. Ayres S, Baer J, Subbiah MT. Exercised-induced increase in lipid peroxidation parameters in amenorrheic female athletes. Fertil Steril 1998; 69: 73–7

    Article  PubMed  CAS  Google Scholar 

  114. Chung SC, Goldfarb AH, Jamurtas AZ, et al. Effect of exercise during the follicular and luteal phases on indices of oxidative stress in healthy women. Med Sci Sports Exerc 1999; 31: 409–13

    Article  PubMed  CAS  Google Scholar 

  115. Willoughby DS, Wilborn CD. Estradiol in females may negate skeletal muscle myostatin mRNA expression and serum myostatin mRNA propeptide levels after eccentric muscle contractions. J Sports Sci Med 2006; 5: 672–81

    Google Scholar 

  116. Paroo Z, Tiidus PM, Noble EG. Estrogen attenuates HSP 72 expression in acutely exercised male rodents. Eur J Appl Physiol Occup Physiol 1999; 80: 180–4

    Article  PubMed  CAS  Google Scholar 

  117. Bombardier E, Vigna C, Iqbal S, et al. Effects of ovarian sex hormones and downhill running on fibre-type-specific HSP70 expression in rat soleus. J Appl Physiol 2009; 106: 2009–15

    Article  PubMed  CAS  Google Scholar 

  118. Melling CW, Thorp DB, Noble EG. Regulation of myocardial heat shock protein 70 gene expression following exercise. J Mol Cell Cardiol 2004; 37: 847–55

    Article  PubMed  CAS  Google Scholar 

  119. Belcastro AN, Shewchuk LD, Raj DA. Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem 1998; 179: 135–45

    Article  PubMed  CAS  Google Scholar 

  120. Belcastro AN. Skeletal muscle calcium-activated neutral protease (calpain) with exercise. J Appl Physiol 1993; 74: 1381–6

    PubMed  CAS  Google Scholar 

  121. McNulty PH, Jagasia D, Whiting JM, et al. Effect of 6-wk estrogen withdrawal or replacement on myocardial ischemic tolerance in rats. Am J Physiol Heart Circ Physiol 2000; 278: H1030–4

    Google Scholar 

  122. Raj DA, Booker TS, Belcastro AN. Striated muscle calcium-stimulated cysteine protease (calpain-like) activity promotes myeloperoxidase activity with exercise. Pflugers Arch 1998; 435: 804–9

    Article  PubMed  CAS  Google Scholar 

  123. Belcastro AN, Arthur GD, Albisser TA, et al. Heart, liver, and skeletal muscle myeloperoxidase activity during exercise. J Appl Physiol 1996; 80: 1331–5

    PubMed  CAS  Google Scholar 

  124. McCord JM. Superoxide radical: controversies, contradictions, and paradoxes. Proc Soc Exp Biol Med 1995; 209: 112–7

    PubMed  CAS  Google Scholar 

  125. Clarkson PM, Sayers SP. Etiology of exercise-induced muscle damage. Can J Appl Physiol 1999; 24: 234–48

    Article  PubMed  CAS  Google Scholar 

  126. Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc 1995; 27: 1022–32

    Article  PubMed  CAS  Google Scholar 

  127. Merly F, Lescaudron L, Rouaud T, et al. Macrophages enhance muscle satellite cell proliferation and delay their differentiation. Muscle Nerve 1999; 22: 724–32

    Article  PubMed  CAS  Google Scholar 

  128. Wise PM, Dubal DB, Wilson ME, et al. Neuroprotective effects of estrogen-new insights into mechanisms of action. Endocrinology 2001; 142: 969–73

    Article  PubMed  CAS  Google Scholar 

  129. Xing D, Miller A, Novak L, et al. Estradiol and progestins differentially modulate leukocyte infiltration after vascular injury. Circulation 2004; 109: 234–41

    Article  PubMed  CAS  Google Scholar 

  130. Prorock AJ, Hafezi-Moghadam A, Laubach VE, et al. Vascular protection by estrogen in ischemia-reperfusion injury requires endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 2003; 284: H133–40

    Google Scholar 

  131. Simoncini T, Fornari L, Mannella P, et al. Novel nontranscriptionalmechanisms for estrogen receptor signaling in the cardiovascular system: interaction of estrogen receptor alpha with phosphatidylinositol 3-OH kinase. Steroids 2002; 67: 935–9

    Article  PubMed  CAS  Google Scholar 

  132. Reid MB. Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 1998; 162: 401–9

    Article  PubMed  CAS  Google Scholar 

  133. Kalbe C, Mau M, Wollenhaupt K, et al. Evidence for estrogen receptor alpha and beta expression in skeletal muscle of pigs. Histochem Cell Biol 2007; 127: 95–107

    Article  PubMed  CAS  Google Scholar 

  134. Lemoine S, Granier P, Tiffoche C, et al. Effect of endurance training on oestrogen receptor alpha transcripts in rat skeletal muscle. Acta Physiol Scand 2002; 174: 283–9

    Article  PubMed  CAS  Google Scholar 

  135. Wiik A, Glenmark B, Ekman M, et al. Oestrogen receptor beta is expressed in adult human skeletal muscle both at the mRNA and protein level. Acta Physiol Scand 2003; 179: 381–7

    Article  PubMed  CAS  Google Scholar 

  136. Sitnick M, Foley AM, Brown M, et al. Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. J Appl Physiol 2006; 100: 286–93

    Article  PubMed  CAS  Google Scholar 

  137. Wakeling AE, Dukes M, Bowler J. A potent specific pure antiestrogen with clinical potential. Cancer Res 1991; 51: 3867–73

    PubMed  CAS  Google Scholar 

  138. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 2001; 91: 534–51

    PubMed  CAS  Google Scholar 

  139. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9: 493–5

    Article  PubMed  CAS  Google Scholar 

  140. Hurme T, Kalimo H. Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc 1992; 24: 197–205

    PubMed  CAS  Google Scholar 

  141. Smith HK, Maxwell L, Rodgers CD, et al. Exerciseenhanced satellite cell proliferation and new myonuclear accretion in rat skeletal muscle. J Appl Physiol 2001; 90: 1407–14

    Article  PubMed  CAS  Google Scholar 

  142. Kadi F, Charifi N, Denis C, et al. The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Arch 2005; 451: 319–27

    Article  PubMed  CAS  Google Scholar 

  143. Seale P, Asakura A, Rudnicki MA. The potential of muscle stem cells. Dev Cell 2001; 1: 333–42

    Article  PubMed  CAS  Google Scholar 

  144. Machida S, Booth FW. Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc Nutr Soc 2004; 63: 337–40

    Article  PubMed  CAS  Google Scholar 

  145. Kamanga-Sollo E, Pampusch MS, Xi G, et al. IGF-I mRNA levels in bovine satellite cell cultures: effects of fusion and anabolic steroid treatment. J Cell Physiol 2004; 201: 181–9

    Article  PubMed  CAS  Google Scholar 

  146. Thomas A, Bunyan K, Tiidus PM. Oestrogen receptoralpha activation augments post-exercise myoblast proliferation. Acta Physiol 2010; 198: 81–9

    Article  CAS  Google Scholar 

  147. Caulin-Glaser T, Garcia-Cardena G, Sarrel P, et al. 17-Beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circ Res 1997; 81: 885–92

    Article  PubMed  CAS  Google Scholar 

  148. Anderson JE. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 2000; 11: 1859–74

    PubMed  CAS  Google Scholar 

  149. Tatsumi R, Anderson JE, Nevoret CJ, et al. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 1998; 194: 114–28

    Article  PubMed  CAS  Google Scholar 

  150. Tatsumi R, Hattori A, Ikeuchi Y, et al. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 2002; 13: 2909–18

    Article  PubMed  CAS  Google Scholar 

  151. Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol 2007; 578: 327–36

    Article  PubMed  CAS  Google Scholar 

  152. Massimino ML, Rapizzi E, Cantini M, et al. ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochem Biophys Res Commun 1997; 235: 754–9

    Article  PubMed  CAS  Google Scholar 

  153. Frazier-Jessen MR, Kovacs EJ. Estrogen modulation of JE/monocyte chemoattractant protein-1 mRNA expression in murine macrophages. J Immunol 1995; 154: 1838–45

    PubMed  CAS  Google Scholar 

  154. Gulshan S, McCruden AB, Stimson WH. Oestrogen receptors in macrophages. Scand J Immunol 1990; 31: 691–7

    Article  PubMed  CAS  Google Scholar 

  155. Miller L, Hunt JS. Sex steroid hormones and macrophage function. Life Sci 1996; 59: 1–14

    Article  PubMed  CAS  Google Scholar 

  156. Calippe B, Douin-Echinard V, Laffargue M, et al. Chronic estradiol administration in vivo promotes the proinflammatory response of macrophages to TLR4 activation: involvement of the phosphatidylinositol 3-kinase pathway. J Immunol 2008; 180: 7980–8

    PubMed  CAS  Google Scholar 

  157. Sugiura T, Ito N, Goto K, et al. Estrogen administration attenuates immobilization-induced skeletal muscle atrophy in male rats. J Physiol Sci 2006; 56: 393–9

    Article  PubMed  CAS  Google Scholar 

  158. Fisher JS, Hasser EM, Brown M. Effects of ovariectomy and hindlimb unloading on skeletal muscle. J Appl Physiol 1998; 85: 1316–21

    PubMed  CAS  Google Scholar 

  159. Meeuwsen IB, Samson MM, Verhaar HJ. Evaluation of the applicability of HRT as a preservative of muscle strength in women. Maturitas 2000; 36: 49–61

    Article  PubMed  CAS  Google Scholar 

  160. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354: 270–82

    Article  PubMed  CAS  Google Scholar 

  161. Hulley S, Furberg C, Barrett-Connor E, et al. Noncardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA 2002; 288: 58–66

    Article  PubMed  CAS  Google Scholar 

  162. Stauffer SR, Coletta CJ, Tedesco R, et al. Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-alpha-selective agonists. J Med Chem 2000; 43: 4934–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Tiidus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enns, D.L., Tiidus, P.M. The Influence of Estrogen on Skeletal Muscle. Sports Med 40, 41–58 (2010). https://doi.org/10.2165/11319760-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11319760-000000000-00000

Keywords

Navigation