Discussion
In this study, we described the correlates of CRF in a community-based sample of adults with type 2 diabetes. We made several observations. There is a strong and inverse association between low fitness and several cardiometabolic factors, including obesity (overall and abdominal), hypertension, and metabolic syndrome and the use of cardioprotective medications. In addition, lower fitness was associated with higher calorie intake among women, and with lower physical activity levels as well as higher whole-body fat and fat-free mass across sex.
Our study is unique in several ways, which include the assessment of the contribution to fitness of caloric intake, body fat composition assessed via DEXA, as well as the use of cardioprotective medications (beta blockers and ACEI/ARB). Our study complements prior reports based on the Look AHEAD data, which assessed fitness as a continuous outcome, and did not evaluate the specific relations of fitness with physical activity, caloric intake, DEXA-based fat and lean mass indices, as well as the use of ACEI/ARB.32 33 In a previous report of a representative sample of the US population, the prevalence of low fitness among US adults was 13.9%,34 although their focus was not on individuals with diabetes, and more importantly CRF was estimated using a submaximal treadmill testing which is inferior to symptom-limited maximal testing due to its reliance on prediction formulas, and may not apply to women, increasing the chance of measurement errors.20 In our study, participants were referred by their primary care physician to participate in a clinical trial and are likely to be healthier than their counterparts with diabetes in the general population.35 Our findings on the associations of lower CRF with higher odds of major CVD risk factors (including glycemic markers, blood pressure, obesity) are consistent with prior reports made in the general population, although none of previous studies exclusively focused on individuals with type 2 diabetes.31 34 36–40 The association of lower fitness levels with higher whole-body fat, lean mass, and fat-free mass is plausible as these are surrogate measures of obesity. Although the latter findings may be surprising, this may simply point to the facts that many other factors affect fitness including genetic factors.41 Similarly, the association of low HDL cholesterol with low fitness among men is consistent with a prior report from the general population.34
We found that suboptimal fitness is highly common among diabetic individuals free of CVD. This points to an intrinsically impaired exercise response in type 2 diabetes, which can be explained by a number of potential mechanisms. The abnormally slow microvascular blood flow may result in impaired oxygen delivery to the skeletal muscles in response to exercise,10 16 17 leading to a higher dependence on oxygen extraction by these muscles in people with type 2 diabetes as compared with controls without diabetes. In addition, the phase 2 kinetics of microvascular blood flow has been shown to be significantly longer in people with type 2 diabetes (without known CVD) as compared with healthy controls.10 This supports the notion that metabolic feedback regulation during exercise is altered in type 2 diabetes.10 42 Furthermore, impairments in the nitric oxide–mediated endothelial function in arteries of people with type 2 diabetes have been described, which results in a decreased steady-state blood flow to the extremities.43 A third mechanism is linked to the reduced mitochondrial content and greater mitochondrial dysfunction in individuals with type 2 diabetes compared with healthy individuals.44 45 This might lead to alterations in the oxidative phosphorylation pathway compromising their ability to use oxygen during exercise. The combination of these mechanisms will result in an oxygen deficit with exercise initiation in type 2 diabetes, which ultimately impact the ability or willingness to maintain activity, resulting in reduced functional capacity.10 Furthermore, skeletal muscles represent a substantial substrate for physically fit individuals,46 hence higher fitness appears protective as it improves cardiometabolic risk factors such as blood pressure or glycemic markers.
Our findings suggest that strategies targeting both CRF and traditional CVD risk factors could improve health outcomes in people with type 2 diabetes. As professional organizations have advocated for the assessment of CRF in addition to other risk factors,1 our study provides data that would help the prioritization of such an assessment of fitness among people with type 2 diabetes. Given the rapidly evolving digital healthcare ecosystem with the availability of wearable fitness trackers, the role of these new technologies to assess and monitor fitness levels and its integration in routine clinical practice for possible risk estimation can be explored, especially among people with type 2 diabetes.47
Our study has some limitations that should be acknowledged. Its cross-sectional nature limits our ability to establish temporality and thus make any causal inference. This is compounded by the possibility of a bidirectional associations. For example, there could be a bidirectional association between CRF and hypertension or obesity. Fitness and relevant covariates were assessed at a single examination; single-occasion measurements are prone to regression dilution bias, and we may have underestimated the true strength of the associations. In our study, participants had to meet at least 4 METs of fitness to be included, hence these participants were most probably healthier than the general population of people with type 2 diabetes, which limits the generalizability of our findings.
Not with standing the aforementioned limitations, this study has several strengths. First, our study is an attempt to characterize CRF in a large sample of individuals with type 2 diabetes free of CVD, and thus assesses the intrinsic influence of diabetes on CRF. Second, fitness was estimated using objective, maximal treadmill testing; prior studies have used submaximal testing,31 34 which is inferior to maximal testing for fitness estimation.20 Third, relevant covariates including caloric intake, physical activity, and body fat composition were assessed using standardized methods.
In summary, in a community-based sample of men and women with type 2 diabetes, we showed that cardiorespiratory fitness was significantly and associated with a better profile of CVD risk factors. These findings underscore public health recommendations for improving cardiorespiratory fitness among adults with type 2 diabetes, in order to reduce the morbidity and mortality.