Discussion
This study is, to our knowledge, the first to apply vertex-based shape analysis to investigate associations between higher plasma glucose levels in normal and clinical range and striatal and hippocampal structures of participants without diabetes with NFG as well as in participants with type 2 diabetes. The main findings of this study were that higher glucose levels were associated mostly with shape differences indicating inward deformation, which are suggestive of smaller regional volumes, in the hippocampus and the striatum. These associations held in participants without diabetes and across the whole sample including participants with abnormal glucose levels, providing further evidence of negative impact of higher plasma glucose levels across the normal and clinical range. Moreover, to investigate whether these effects were specifically attributable to glucose levels or to other individual characteristics and particularly health status, we conducted analyses including and excluding important covariates in addition to age and sex, which have known impact on type 2 diabetes occurrence and brain atrophy.23 ,24 Findings were very similar across these analyses, thus strengthening the case for glucose levels as the main factor underlying these effects.
Important differences were detected when participants without diabetes were investigated separately. Interestingly, shape differences indicating inward deformation associated with higher glucose levels appeared to be more pronounced in the hippocampus bilaterally when all participants were included for analysis. Since clinical diabetes appears to be more prominently associated with positive left hippocampal shape differences, while glucose levels among participants with diabetes are associated with shape differences showing inward deformation (as seen in figure 1 when comparing participants without diabetes with NFG with participants with diabetes, and when testing association between glucose levels and shape differences in participants with diabetes), together this pattern of results might suggest that, in the hippocampus, poor glucose level regulation may be to blame. Furthermore, apparent shape differences indicating inward deformation at the striatum were present in participants with diabetes compared with participants without diabetes. Yet, higher glucose levels are more associated with differences indicating outward deformation at the striatum among these participants with diabetes. These findings further suggest that while shape differences associated with type 2 diabetes may have developed from long-term higher glucose levels, they may not be consistently associated with the measured glucose levels because participants with type 2 diabetes may receive medical intervention for better glucose regulation. The presence of shape differences indicating outward deformation in type 2 diabetes and suggestive of larger regional volume is nevertheless surprising. Possible explanations for these findings are that inflammatory processes, which are known to be upregulated in type 2 diabetes,25 lead to increases in regional volume. Alternatively, it is possible that factors such as diabetic medication use or other factors specific to participants with type 2 diabetes, such as complications and comorbidities, may underlie these findings. Unfortunately, cell sizes and statistical models did not allow for such hypotheses to be tested in the present investigation but should be followed up in future research. For instance, comorbidities of type 2 diabetes cannot be totally disambiguated from the effects of diabetes. For instance, although we controlled for hypertension at wave 1 in our model, hypertension is often comorbid with diabetes and its development over the follow-up may partly explain effects observed. To disambiguate the effects of hypertension and other potential comorbidities, investigating hypertension in a longitudinal design using multilevel models is required.
When interpreting structural differences related to glucose levels, it is important to consider their possible functional implications. The present findings suggest that the inward deformation at the striatum begins at the rostral and caudal ends of the putamen, and dorsal caudate head and ventromedial caudate body among participants with NFG. The affected rostral areas are known to have connections with the medial prefrontal cortex and orbitofrontal cortex; therefore, impaired structure in these regions could be expected to impact executive function and emotional control. In contrast, the caudal areas have connections with the premotor and motor cortices; hence, structural differences in this region may potentially lead to motor function deficits.26–28
In comparison, shape differences indicating inward deformation associated with participants with diabetes when compared with participants without diabetes seem to extend along the striatum and particularly on the ventral and dorsal putamen as well as across the whole globus pallidus. These differences could affect frontostriatal connections projecting to the dorsolateral prefrontal and anterior cingulate cortex, which could in turn affect related functions such as motivated behavior. The pattern of results could suggest that shape differences indicating inward deformation at the striatum might develop in a progressive manner since participants with diabetes exhibit more shape differences showing inward deformation than participants with NFG. Beyond the striatum, shape differences were mainly observed in the CA1 and subiculum subregions of the hippocampus. A possible implication of these findings is that hippocampal output via CA1 and subiculum to other cortical and subcortical structures may be more impaired in participants with diabetes. As a whole, and in light of the animal literature, these findings appear consistent with the view that high glucose levels may lead to structural changes that may differ in their magnitude and localization during type 2 diabetes disease progression. The functional implications of shape differences are not completely clear and further studies investigating the association between striatal functions and shape changes are needed.
These results are also consistent with previous findings showing that higher plasma glucose levels within the normal range are associated with greater hippocampal atrophy in the same cohort but at earlier assessments9 and with regional volumetric differences in cortical gray matter and white matter,8 and that type 2 diabetes is associated with global brain atrophy.2 ,12 However, unlike the present study, these earlier investigations did not specifically address the localization of shape differences within the striatum and hippocampus. This method provides important information about the brain networks and functions that may be affected by these differences, and it is also more sensitive to subtle structural variations. Indeed, to investigate this point, we conducted volumetric analyses using similar statistical models and found that, whereas significant localized differences were identified for most structures and most comparisons using shape analyses, a very small number of volumetric tests reached significance. Although it is also possible that local inward shape deformation may be counterbalanced by as much outward shape deformation across the surface resulting in little or no volumetric difference, our findings showed more clusters indicating inward deformation in structures where no volumetric difference was detected. These findings support an alternative explanation that shape analysis is more sensitive to earlier morphological differences which cannot yet be detected with volumetric measures.
This study has a number of limitations. While the subsample of participants under investigation has been randomly sampled from a larger cohort, which was randomly sampled from the community, it is not completely representative of the population at large. Participants were mainly Caucasian, limiting the representativeness of results in a broader population. The cross-sectional design used in the present study can only demonstrate associations and not a causal link between higher glucose levels and striatal shape differences. Fasting plasma glucose was collected at wave 1 when participants were in their early 60s; further studies using data from younger adults and elderly participants are needed. In addition, longitudinal analyses could have provided further benefits over the cross-sectional design used here. However, the present study used a relatively new automated vertex-based shape analysis for which robust longitudinal pipelines have not yet been implemented. The smaller sample size in the group with diabetes provides reduced statistical power, which in turn may have influenced the results and somewhat reduced their representativeness in this clinical population. Finally, glucose metabolism and diabetic status were assessed based on self-report of type 2 diabetes and fasting plasma glucose levels, which may have been less precise than diagnostic assessments based on glycosylated hemoglobin (HbA1c) and full clinical interviews. However, this community-based study was conducted in a large sample which makes it more representative than studies elsewhere which are often composed of self-selected volunteers or patients. Importantly, analyses were controlled for a number of relevant covariates, and individuals with and without type 2 diabetes were carefully compared.
In conclusion, this study provides further evidence linking high blood glucose levels and cerebral morphology, particularly in type 2 diabetes but also within the normal range in non-diabetics, and suggesting that the adverse effects of higher glucose levels might start developing relatively early in the disease process. Therefore, there is a pressing need to identify the early risk factors and predictors of increasing glucose levels in midlife and before as well as for the development of preventative and risk reduction strategies at the population level.