Discussion
The results of this first nationwide study indicate that the overall prevalence of diabetes was elevated (13%), in particular among Hindustanis (23%). From the participants with diabetes, 39.6% was not diagnosed previously. This percentage differed among the ethnicities and was highest for Amerindian men and Hindustani women. The distribution and association of biological, demographic, lifestyle, anthropometric and metabolic risk factors varied between ethnic groups. Compared to Hindustanis, all ethnic groups had a lower OR for prediabetes or diabetes. This difference decreased, in particular between Amerindians and Hindustanis, as we adjusted for all risk factors.
Prevalence
Previous studies have estimated a diabetes prevalence of 9% in the Caribbean and 10% in Suriname.1 ,18 ,32 These studies were based on smaller samples sizes and limited to the coastal areas with older study populations.1 ,18 ,32 In the current study, with inclusion of the rural interior and the younger age groups, we found a higher prevalence of diabetes. Moreover, our prevalence of undiagnosed diabetes was even five times higher than the previous estimate made by the International Diabetes Federation in 2013.
Compared to the diabetes prevalences published (9.0–21.1%) in studies in Indians and other descendants from India,15 ,33–36 the Hindustanis in our study had a higher diabetes prevalence. Previously reported differences for diabetes prevalence between ethnic groups are not consistent in the UK, the US and the Netherlands.11 ,14 ,15 ,36–38 However, on the basis of previous studies in the Netherlands,14 ,15 we expected a higher prevalence in Hindustanis compared to other ethnicities as observed in our study.
The difference between sexes for the overall population was not evident for diabetes, while the prevalence of prediabetes was higher in men. These findings are in line with previous studies.24 Except for Javanese, we observed no difference for diabetes prevalence between sexes within ethnic groups. The higher prevalence that we observed in Javanese women was in line with studies in Indonesians.39 This could be related to the low physical activity as numerous studies are showing that increased physical activity reduces the risk of diabetes.39 ,40 Published results from the Suriname Health Study show the lowest percentage of required physical activity for Javanese women.26 The results on age in our study are in line with the literature for all ethnic groups.25 The observed prevalences of diabetes in our study are high and actions for the early detection, prevention and control of diabetes are required. The differences observed between ethnic groups suggest the development of ethnic-specific strategies. These interventions should take account of different risk factors.
Ethnic differences in risk factors
The ORs observed for biological risk factors in this study are in line with previous studies.13 ,24 ,25 ,41 The associations of demographic risk factors with prediabetes or diabetes observed in the total and ethnic subgroups have been described earlier.42–44 However, not all findings were consistent. The positive association with prediabetes or diabetes we observed of ‘high education’ in Maroons and of ‘high income’ in Creoles contrasted the negative association with prediabetes or diabetes, of ‘high education’ and ‘high income’ in Hindustanis. The association of ‘not employed’ with prediabetes or diabetes was positive in Mixed and negative in Amerindians and Creoles. These inverse associations cannot be explained with the available data and need to be explored in more detail. In anthropometric risk factors, the positive association of WC with prediabetes or diabetes demonstrated for all ethnic groups in our study is in line with the literature.45–47 Previous publications state that non-white populations develop diabetes at a higher rate at BMIs below 25 Kg/m2, the WHO cut-off point for overweight.29 ,48 Our results demonstrated an association of BMI with pre-diabetes or diabetes, initiated from lower values in Creole and Hindustani people compared to Javanese and Mixed people. The earlier association in Hindustanis is in agreement with the lower cut-off point published for Asians.29 Higher cut-off points are published for ethnicities of African descent,49–51 which contradicts the association of BMI observed in Creoles. The associations at higher BMI values for Javanese and the absence of an association in Amerindians and Maroons, however, are not explained by differences in cut-off values between ethnicities. To explore the ethnic differences concerning the association of BMI with prediabetes or diabetes in more depth, further research on variations in body composition and cut-off values is needed. The associations of the metabolic risk factors (increased blood pressure, total cholesterol and triglycerides and low HDL cholesterol) with prediabetes or diabetes in our study are in line with previous findings.7 ,8 ,52 In our study, the lipid profiles from the ethnic groups of African descent seemed less associated with diabetes in comparison to other ethnicities. This coincides with published studies.38 Previous studies implicate that physical activity is associated with increased HDL cholesterol.53–55 For the Amerindians, we found a negative association of HDL cholesterol, a negative association of physical activity and no association of triglycerides with prediabetes and diabetes. Physical activity might have influenced the association of HDL cholesterol with prediabetes or diabetes in Amerindians.
Research implicates that adults with both diabetes and hypertension have the worst of many complications.56–58 The strongest association with hypertension was found in Hindustanis and Javanese, placing these groups at higher risk. More detailed research is required to develop or adapt risk scores for screening in ethnic groups.
Ethnicity as risk factor
Our study results suggest that biological, demographic, lifestyle, anthropometric and metabolic risk factors influence the association of ethnic groups with prediabetes and diabetes combined and more evidently with diabetes. Previous studies on Amerindians have shown a vast increase in the incidence and prevalence of diabetes when living with risk factors in urbanized settings.59 ,60 Many studies also show high prevalences for Indians and descendants from India.15 ,33 ,34 ,36 The difference between the OR of mainly Amerindians and Hindustanis observed in this study decreases with the adjustment of all risk factors. This is in line with higher prevalences found in these groups in urban settings. Studies comparing the ethnic groups similar to our study are scarce as most ethnic comparisons are made with Caucasians.12 The high OR of Hindustanis with diabetes, compared to the other ethnic groups, remains after adjusting for all different risk factors. The faster conversion from prediabetes to diabetes, previously observed in Hindustanis,14 might contribute to the higher prevalence we observed for Hindustanis in our study. For a complete analysis, other risk factors, for example, diet, should also be considered.61 Genetic factors33 ,62 might play a role but heritable epigenetic changes, epistasis and gene–environment interactions also need further research.63 For the development and application of ethnic-specific guidelines for the prevention and treatment of diabetes preferably, follow-up studies are needed.
Strengths and limitations
The strengths of this cross-sectional study were the design with a stratified multistage cluster, adequate to represent the ethnic and geographic diversity of the Surinamese population by sex in five different age groups.19 The design included standardized data collection tools and used measures like the Kish20 method to minimize interviewer and selection bias. The use of trained interviewers, the inclusion of control questions in the questionnaire, and the intense revision on consistency and completeness including random checks on responses of participants improved the validity of our self-reported data.19 In addition, in the analysis, sample weights were applied to correct for selection and response bias. All blood samples were analyzed in a certified laboratory. Further, the percentage of missing data in general was relatively small (<2%), except for of the information on income status (41.6%).
Still, some limitations should be considered. First, from all participants, 59% met the criteria of an 8 hours overnight fast. Although sample weights were applied, this high non-response for blood samples might have still resulted in self-selection bias, inflating the outcomes on prevalence. Second, although the wide range of variables evaluated in this study allowed control for confounders, residual confounding might still have occurred, as with any observational study. For example, information on nutrition was not considered. Third, we used the WHO criteria on fasting plasma glucose to define diabetes and prediabetes in our study. The combined use of the fasting plasma glucose and the oral glucose tolerance test could have resulted in a slightly higher prevalence.64