Discussion
In this case–control study nested within the SCHS, higher levels of GGT and ALT were positively associated with the incident T2D risk independent of established T2D risk factors, including BMI, blood lipids, CRP, and adiponectin. Additionally, the best cut-off values for GGT and ALT were 23 and 21 IU/L in this Chinese population, and dichotomized GGT and ALT significantly improved T2D risk prediction.
Our finding of positive relations of GGT and ALT with incident T2D was largely consistent with previous studies across populations: a meta-analysis of 24 prospective studies reported a pooled relative risk of 1.34 (95% CI 1.27 to 1.42) comparing highest versus lowest tertiles of GGT levels,39 and 1.66 (95% CI 1.31 to 2.09; 17 studies) for ALT,23 although some included studies with relatively small sample sizes, ranging from 36 to 208 for T2D cases, did not observe the associations. A recent Mendelian randomization study further provided causal evidence for the association between GGT and insulin resistance.40 In the present study, we did not observe associations between AST and ALP with T2D, which was consistent with previous studies,14 ,15 ,21 ,23 ,41 and this may be due to their lack of specificity for liver diseases. Additionally, no association was observed between LDH and T2D risk in the current study. Although increased LDH expression has affected glucose metabolism in a mechanistic study,42 few prospective human studies have assessed the LDH–T2D association.
Elevated GGT and ALT levels were linked to T2D development as useful surrogate measures of NAFLD characterized by hepatic fat accumulation.43 NAFLD may indicate fat deposition in other organs such as skeletal muscle, the myocardium, and the pancreas, which predispose individuals to T2D risk.43 However, a Korean study showed positive associations between GGT/ALT and T2D risk among participants without fatty liver, and suggested that alternative pathways existed.20 Additionally, ALT was linked to T2D via hepatic insulin resistance,14 and GGT through oxidative stress6 and inflammation.7 However, adjustment for CRP (low-grade inflammation marker) had no influence on the association in our study and in other studies,2 ,13 ,15 ,20 suggesting that GGT may be involved in the pathogenesis of T2D through other mechanisms. Moreover, previous evidence showed that the relations of GGT and ALT with T2D were also independent of other important pathologies in T2D development such as whole-body insulin resistance2 ,14 and blood lipids,2 ,13 ,16 ,19 and the current study further showed that the associations were also independent of adiponectin.
Moreover, our study found that GGT and ALT levels improved T2D risk prediction, and this was supported by several previous studies.16 ,24–27 GGT, ALT, glucose, HbA1c, HDL-C, and TG collectively improved the discriminatory power (indicated by AUC) above the basic model in EPIC-Potsdam study.24 GGT, together with BMI, waist circumference, and TG, showed reasonable discrimination (measured by c-statistics) in D.E.S.I.R study.25 Moreover, inclusion of HbA1c and GGT in a simple clinical model showed significant improvement in T2D prediction (AUC, NRI, and IDI) in British older men and women.26 Furthermore, a recent study found that ALT ≥26 IU/L improved T2D prediction (AUC, NRI, and IDI) among white and African-Americans living in the USA.27 Additionally, a Japanese study has found that GGT (≥18 IU/L) or ALT (≥13 IU/L) had similar discriminatory power with BMI for predicting T2D.16 We have identified a lower ALT cut-off value (21 IU/L) for T2D prediction compared to the US study, although higher than the Japanese study. As for GGT, some studies observed little improvement in T2D prediction (indicated by NRI) when including GGT and other novel biomarkers to the basic model.28–30 In the current study, including GGT in the model significantly improved NRI, but not AUC, and the cut-off value (≥23 IU/L) is slightly higher than the one identified in a Japanese study.16
The strength of the current study included adjustment for well-established diabetes risk factors (including BMI, CRP, lipids, and adiponectin), and using comprehensive statistical methods (AUC, NRI, and IDI) to explore the predictive utility of liver enzymes. However, there are some limitations. First, we measured liver enzymes only once and may not represent long-term profile. Previous studies have shown that the within-person coefficient of variation of GGT ranged between 12.2% and 13.8% in repeated measures up to 1 year.44 ,45 In addition, the impact of single measurement of GGT in the current study would most likely lead to non-differential misclassification and underestimate the GGT–T2D association. For example, a previous study in the D.E.S.I.R. cohort found that correction for the within-person variation of GGT slightly strengthened the association between GGT and T2D risk.46 Second, incident diabetes was obtained from self-reported information, thus undiagnosed diabetes may exist. However, we have measured HbA1c, which was updated as a diagnosis criterion of diabetes in 2010 by the American Diabetes Association.33 Similar associations were found when analyzing the data in the total samples or in those cases with HbA1c ≤48 mmol/mol (6.5%) at baseline. Third, although we did not observe any interaction with ALT or GGT, our sample size may be small and thus underpowered to detect the interaction. Fourth, we did not measure hepatitis B and C infection, which could result in elevated liver enzymes. Moreover, we did not have data on insulin resistance; however, the association remained in previous studies adjusting for direct measurement of insulin resistance.2 ,14 Last but not least, HbA1c was a selection criterion for controls in the current study; therefore, we could not include it in our prediction model. A study from the Netherlands showed that liver function tests led to small but significant improvement in T2D prediction above basic model; however, the improvement disappeared when HbA1c was included in the basic model.29