Discussion
The current study revealed three important findings. First, TEE was comparable between patients with and without DM. Second, the mean TEE was slightly lower and the mean BMR was slightly higher in patients with than without DM, although the difference was not statistically significant. Third, the PAL tended to be lower in patients with than without DM. These data suggest that recommendations regarding dietary intake in patients with DM can be determined using an equation similar to that used in patients without DM.
TEE was comparable between patients with and without DM (table 2). This is inconsistent with a previous study of Pima Indians,10 which showed no significant difference in TEE as measured by the metabolic chamber method between 49 patients with DM and 102 participants without DM; however, the patients with DM had significantly higher TEE after adjustment for age, sex, FFM, and FM. A Danish study11 also showed no significant difference in unadjusted TEE as measured by the metabolic chamber method between 31 patients with DM and 61 patients without DM, but TEE was significantly higher in patients with DM after adjustment for sex, age, FFM, FM, and physical activity (mean difference, 164 kcal/day; SD, 31 kcal/day; p<0.01). In a US study using the DLW method, TEE was not significantly different between 9 obese subjects without DM and 12 obese subjects with DM (p=0.496).4 Direct comparison by the DLW method was recently reported in 10 Japanese patients without DM and 12 with DM, showing no significant difference between the two groups.18Online supplementary table 1 summarizes the TEE values measured either by the metabolic chamber method or DLW method in patients with DM. The reason for the inconsistency is uncertain, but we speculate that it occurred partly because of the difference between the metabolic chamber and DLW methods. The metabolic chamber method provides TEE in a confined space; instead, the DLW method provides more information regarding physical activity under free-living conditions. Each study involves different ethnicities, BMIs, and models for adjustment. Because TEE may vary by individual physical activity and our results may not be sufficient to make conclusions between two groups, we tested TEE using a METs-adjusted model in which METs were directly estimated by an accelerometer. As a result, METs-adjusted TEE was also comparable between patients with and without DM (table 2, model 4).
The BMR was slightly higher in patients with than without DM. This is consistent with previous studies that showed a higher BMR in subjects with DM.11 19 20 In one of these studies, the BMR was significantly higher among participants with an abnormal HbA1c level.20 In contrast, the BMR adjusted for age, sex, HbA1c level, and fasting glucose level tended to be higher in patients with than without DM in the present study (mean difference, 80 kcal/day; 95% CI −5 to 166; p=0.065) (online supplementary table 2). Interestingly, a recent study showed that lower BMRs were found in subjects with a family history of DM who developed DM later in life.21 In the above-mentioned study of Pima Indians, an increased BMR was observed in subjects with DM and in those with impaired glucose intolerance,22 suggesting that a threshold of an increase in the BMR exists between individuals with normal and impaired glucose tolerance and that hyperglycemia is not a sole cause of an increased BMR. Another study showed that insulin treatment was negatively correlated with the BMR in Japanese patients with type 2 DM. In the same study, endogenous insulin secretion determined by the glucagon test was also an independent factor for the BMR.23 Our study produced a similar finding in that the DM-Insulin and DM-OAD subgroups had a slightly higher BMR than the DM-Diet subgroup and non-DM group, although the difference was not statistically significant (table 3).
The PAL tended to be lower in patients with than without DM (1.71 vs 1.81, respectively) (table 2). Previous reports using the DLW method showed similar PALs in healthy older Caucasians (male, 1.65; female, 1.51) and African–Americans (male, 1.62; female, 1.41).24 A recent study of 99 older patients also showed a similar PAL level (1.68).25 In the present study, the mean difference was 0.1, which equates to a maximum of about 120–150 kcal/day in a normal adult. In addition, physical activity varies among study participants; thus, caution is needed when generalizing this difference to other populations because of selection bias. However, this difference may be ignorable.
This study has three main strengths. First, a comprehensive analysis was employed to measure energy expenditure between patients with and without DM, including the DLW method, indirect calorimetry, bioelectrical impedance analysis, and triaxial accelerometry. Second, equivalence was determined by the threshold of 5 kcal/kg/day with the 95% CI of the mean difference. Third, our patients with DM consisted of DM-Insulin, DM-OAD and DM-Diet subgroups (table 3). Among these subgroups, TEE was comparable, but the BMR tended to be higher in the DM-Insulin subgroup than in the DM-OAD and DM-Diet subgroups, although there was no significant difference.
This study also has some limitations. First, the number of participants was relatively small due to the cost of the DLW method. Further study is necessary to determine the statistical difference between the two groups with enough statistical power. Although we carefully selected participants to mimic the distribution of our entire outpatient population, selection bias is a major concern in this study. We selected patients aged 60–79 years and avoided those with an extremely high or low BMI. The HbA1c distribution was carefully matched to each treatment cohort, and the BMI distribution was matched between the DM and non-DM groups. Second, we observed a significant difference in age between the DM and non-DM groups (70.2 vs 67.1 years, respectively). Thus, we statistically adjusted patients’ age throughout the study when we compared the two groups. Third, the body composition was determined by the bioelectrical impedance method instead of a dual-energy X-ray absorptiometry scan. The adjusted TEE by FFM measured with the bioelectrical impedance method may be inaccurate. Fourth, the patients in the non-DM group were outpatients who did not have DM but who regularly visited the same hospital for dyslipidemia, hypertension, and other conditions. These patients might have had a different lifestyle than healthy volunteers. This point is both a limitation and strength of this study. As another potential bias, the study participants were recruited at a single hospital. Therefore, any generalizations must be made with caution.
In conclusion, TEE was comparable between Japanese patients with and without DM, although the BMR and PAL were slightly different between the two groups. Thus, it may be reasonable to apply the same dietary recommendations of the general population to patients with DM. Further study is necessary to confirm these findings for application to clinical practice.