Article Text

Download PDFPDF

Deficiency of C3a receptor attenuates the development of diabetic nephropathy
  1. Xiao-Qian Li1,
  2. Dong-Yuan Chang1,
  3. Min Chen1,
  4. Ming-Hui Zhao1,2
  1. 1Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
  2. 2Peking-Tsinghua Center for Life Sciences, Beijing, China
  1. Correspondence to Professor Min Chen; chenmin74{at}sina.com

Abstract

Objective Diabetic nephropathy (DN) is the leading cause of chronic kidney disease and end-stage renal disease. Emerging evidence suggests that complement activation is involved in the pathogenesis of DN. The aim of this study was to investigate the pathogenic role of C3a and C3a receptor (C3aR) in DN.

Research design and methods The expression of C3aR was examined in the renal specimen of patients with DN. Using a C3aR gene knockout mice (C3aR−/−), we evaluated kidney injury in diabetic mice. The mouse gene expression microarray was performed to further explore the pathogenic role of C3aR. Then the underlying mechanism was investigated in vitro with macrophage treated with C3a.

Results Compared with normal controls, the renal expression of C3aR was significantly increased in patients with DN. C3aR−/− diabetic mice developed less severe diabetic renal damage compared with wild-type (WT) diabetic mice, exhibiting significantly lower level of albuminuria and milder renal pathological injury. Microarray profiling uncovered significantly suppressed inflammatory responses and T-cell adaptive immunity in C3aR−/− diabetic mice compared with WT diabetic mice, and this result was further verified by immunohistochemical staining of renal CD4+, CD8+ T cells and macrophage infiltration. In vitro study demonstrated C3a can enhance macrophage-secreted cytokines which could induce inflammatory responses and differentiation of T-cell lineage.

Conclusions C3aR deficiency could attenuate diabetic renal damage through suppressing inflammatory responses and T-cell adaptive immunity, possibly by influencing macrophage-secreted cytokines. Thus, C3aR may be a promising therapeutic target for DN.

  • C3a receptor
  • diabetic nephropathy
  • inflammation
  • microarray
  • T cell

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Contributors MC designed the study. D-YC collected the renal biopsies. X-QL carried out the experiments, analyzed the data, made the figures and drafted the paper. MC and M-HZ revised the paper. All authors approved the final version of the manuscript.

  • Funding This study was supported by the grants from the National Key Research and Development Program (No. 2016YFC1305405), two grants from the National Natural Science Fund (Nos. 81425008 and 81621092), the grant by Peking University Health Science Center (No. BMU2017CJ002), and a grant from the University of Michigan Health System and Peking University Health Sciences Center Joint Institute for Translational and Clinical Research.

  • Competing interests None declared.

  • Patient consent for publication Obtained.

  • Ethics approval The study was approved by the Research Ethics Committee of Peking University First Hospital.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement All data relevant to the study are included in the article or uploaded as online supplementary information.