Discussion
Our findings from the PROMISE cohort indicate an overall decline in fasting and OGTT-derived IC measures over the 9-year follow-up period in participants at high risk for T2D development. Furthermore, we identified that components of the metabolic syndrome (including central obesity and markers of inflammation and fatty liver) and non-European ethnicity were independently associated with declines in IC. Finally, lower baseline IC, and declines in IC over time, were related to the incidence of dysglycemia. To our knowledge, this is the first study to assess the longitudinal determinants of change in IC with data from multiple follow-up visits. Our detailed measurements at each follow-up visit allowed for assessment of both fasting and area-under-the-curve IC over time in a high-risk population.
It has been proposed that changes in IC represent a compensatory response to early declines in insulin sensitivity and/or secretion,9 29 or, alternatively, are a consequence of upstream metabolic disorders such as ectopic liver fat.8 15 A cross-sectional study of 92 healthy, non-diabetic individuals showed a significant decline in IC at each tested glucose infusion rate in insulin-resistant obese participants compared with insulin-sensitive obese subjects; however, there was no significant difference between insulin-sensitive obese and non-obese groups.30 In another cross-sectional study of 91 non-diabetic obese subjects, increased insulin secretion and decreased IC rate were concurrently observed in the insulin-resistant group.31 Furthermore, declining IC (and not increasing secretion) was the first adaptation to declining insulin sensitivity.31 These findings support the notion that declining IC may be a compensatory mechanism to reduced insulin sensitivity. In contrast, however, studies have also shown that upstream risk factors for T2D, such as fatty liver, are independently related to declines in IC.8 15 A cross-sectional study of 80 non-diabetic subjects showed that increased liver fat, measured using proton magnetic resonance spectroscopy, was associated with impaired IC.15 Similar findings demonstrating declines in IC with increased liver fat have also been observed in diabetic subjects.8 32 Evidence to date from human studies, however, has been insufficient to confirm or refute these hypotheses.
Results from the present study suggest the possibility that these pathophysiological phenomena may coexist early in the natural history of T2D. We assessed 9-year changes in IC across baseline tertiles of insulin sensitivity and beta-cell function. Although there was a steeper decline in IC among participants categorized in the highest tertiles of insulin sensitivity and beta-cell function at baseline compared with the other groups, IC was consistently low during follow-up among those with the poorest baseline insulin sensitivity and beta-cell function. Thus, suggesting that IC may be an early adaptation to compromised insulin sensitivity and beta-cell function.
At the same time, our results provide evidence that upstream metabolic disorders contribute to changes in IC. Specifically, we showed that increased ALT concentration, a proxy for ectopic liver fat deposition, was associated with declining IC, suggesting that reduced IC may in part be a consequence of hepatic dysfunction caused by ectopic fat deposition. Similar findings were seen in the Insulin Resistance Atherosclerosis Study (IRAS) Family Study cohort of 1116 participants where ALT declined across increasing tertiles of IC,2 and remaining significant after adjustment for age, sex and ethnicity.
To further understand the determinants of IC change over time, we examined the impact of other major risk factors associated with underlying disorders of T2D. We investigated the relationship between IC and central obesity using WC. We identified an inverse longitudinal association between IC and WC, which is consistent with findings from previous studies.4 6 7 13 33 Cross-sectional analysis from the IRAS cohort showed that WC declined significantly across increasing tertiles of IC when adjusted for age, sex, ethnicity and center of data collection (p<0.001).4 In line with our results, analysis of 800 subjects from the Metabolic Syndrome Berlin Brandenburg study showed that IC was inversely associated with WC (r=−0.28, p<0.001) after adjusting for age and sex.13 Furthermore, Erdmann et al showed a weight-dependent decrease in IC in 271 subjects stratified by BMI.33 Our findings extend the current literature by documenting a longitudinal association of central adiposity (using measurements of WC at multiple time points) with change in IC over time.
Other components of the metabolic syndrome also showed significant longitudinal associations with IC. WCC, a marker of low-grade inflammation, was a significant determinant of longitudinal declines in both IC measures in this study. WCC has previously been associated with obesity and the development of T2D.34 Furthermore, we showed that increased physical activity over time was positively associated with increased IC, a finding consistent with current literature.16 35 36 A weight loss experiment of 15 obese children and adolescents tested the effects on IC at various levels of strenuous exercise over a 10-week period.36 Compared with baseline, all subjects lost weight and IC improved significantly. Interestingly, improvements in IC have been observed immediately after 2 hours of strenuous exercise in healthy and diabetic men.35 Similar findings of acute physical activity and improved IC have been observed in mice.16 The physiological pathway through which physical activity improves IC remains unclear; however, it has been hypothesized that the physical activity increases the expression of IDE.
In addition to determinants associated with inflammation and the development of metabolic syndrome, ethnicity may be an important factor in IC response. Previous research has shown that IC declines more steeply in those of non-Caucasian ethnicity.4 37 A cross-sectional study showed that African-American children experienced a greater IC decline than American White children (p<0.001).37 Similarly, the multiethnic IRAS cohort reported a significantly larger proportion of African-American and Hispanic subjects versus non-Hispanic Whites in the lowest tertile of IC compared with the highest tertile.4 Although our population was over 70% European ethnic origin, we observed a clear distinction between non-European versus European at the extreme tertiles of IC at baseline and relationship was significant in our longitudinal analysis.
In this study, we saw an inverse association of IC with incident dysglycemia. The relationship of insulin sensitivity and beta-cell function with declining glucose tolerance has been widely studied,38 39 but less information is available regarding the role of IC. A previous experiment examined glucose tolerance in elderly subjects and showed elevated glucose levels in elderly compared with young participants. These findings were associated with defects in insulin sensitivity, beta-cell function, and IC.40 Specifically, compared with young participants, the elderly subjects had lower total body IC suggesting a possible compensatory response to glucose intolerance. Furthermore, consistent with our findings, hepatic IC increased in the elderly subjects compared with younger subjects, suggesting that total body and hepatic IC are regulated differently.
One of the main strengths of this study is that PROMISE is a well-characterized multiethnic longitudinal cohort of subjects at risk for T2D development. Detailed assessments at baseline and multiple follow-ups allowed for the consideration of repeated measurements of IC, insulin sensitivity, beta-cell function, and covariates. In addition, the GEE statistical model used in our longitudinal analysis helped retain the maximum number of subjects.
There are, however, a few limitations to consider. Our assessment of IC, insulin secretion, and beta-cell function was not captured using gold standard procedures; the invasiveness and cost of those approaches are not amenable for large cohorts. Instead, validated proxy measures were calculated using insulin, glucose, and C peptide values from fasting and OGTT administered at each visit. Our method of calculating IC has been used in other studies13 21 22 41 and ICAUC has been shown to be reflective of IC measured using hyperinsulinemic-euglycemic clamps (r=0.74, p<0.001).22 Furthermore, indices used to estimate insulin sensitivity and IC were derived in part from the same core variables (specifically, insulin concentrations during the OGTT) and thus we were not able to evaluate their association in the same GEE models due to collinearity. However, we evaluated the relationship of well-established proxies of insulin sensitivity, such as WC, with changes in IC in these models. Also, other potentially important variables may affect changes in IC, which we were unable to account for. Genetics may be an important player in IC. A study of 513 Mexican-Americans demonstrated that changes in IC may be a heritable trait with the identification of chromosomes 15 and 20 related to IC.42 Additionally, with this being an observational cohort, we are not able to confirm causality due to the potential for residual confounding. Furthermore, the PROMISE cohort does not include participants who were completely free of risk factors for T2D at baseline. Lastly, the generalizability of our findings is limited to individuals with similar demographic characteristics as this population.
In conclusion, our findings provide evidence for the role of core components of the metabolic syndrome, specifically fatty liver and subclinical inflammation, as factors determining longitudinal declines in IC. In addition, we saw that IC was associated with declining insulin sensitivity and beta-cell function, and, importantly, the trajectory of decline depended on the status of these variables at baseline. Therefore, our study highlights the complexity in factors that impact the decline in IC. Changes in IC may be due to an interplay of both upstream metabolic abnormalities and compensatory responses to early metabolic disorders associated with T2D. Our current results extend existing literature regarding IC by using a longitudinal design with repeated measures at four time points. Additional longer term studies are needed to further expand our understanding of the role of IC in the natural history of T2D.