Discussion
The current study paid particular focusing on the application of trajectory modeling based on a life course approach for longitudinal data. In our population-based cohort study, middle-aged people were followed up biennially, and four different patterns of SHS exposure level trajectories for over 14 years were found by using trajectory modeling. The trajectory that developed the highest risk of type 2 diabetes had a rapidly decreasing trend for SHS exposure level over time and similar SHS exposure level at the finished point of follow-up compared within the reference trajectory that had stable on the lowest range during the follow-up time. This finding is meaningful as an aspect that even though resolving the external exposure of SHS in middle adult, elevated SHS exposure level up to above 180 min/day in early adulthood may alter glucose metabolic structure in a way that is not reversible. Also, despite the highest level of SHS exposure at the finished point of follow-up, the trajectory that showed slightly decreasing (‘Moderate’ trajectory) trend during the follow-up period from 60 to 70 min/day at baseline had no relationship with type 2 diabetes risk.
So far, many epidemiologists already have studied the issue of the association between smoking and type 2 diabetes.12 24 Also, the harmful effects of SHS exposure have been noted since 1928.25 However, when the Surgeon General Report was published in 1964, we did not know enough about the harmfulness of SHS exposure. And then some researchers have suggested the hazard of SHS intermittently through related previous studies.26
Indeed, there was a try for examining the association of SHS exposure and risk of type 2 diabetes among Koreans in a previous cohort study, which showed that participants exposed to SHS had a significantly increased risk of 1.41-fold for type 2 diabetes after adjusting for covariates.7 As regards the highest level of SHS exposure had the highest risk of type 2 diabetes, our findings are consistent with results from previous studies showing the dose–response relationship. Eze and his colleagues found the strong dose–response relationship, that subjects exposed to SHS as up to 3 hours/day in the home had a significant risk of 2.6-fold for type 2 diabetes; however, the previous result has the limitation of exposure site.10 Also, for impaired fasting glucose, all exposure trajectories had a 30%–40% higher risk of type 2 diabetes compared with a trajectory with the lowest level of SHS exposure. That finding supports the theory in previous studies that if we once had even little exposure level to SHS, we may affect from hazardous matters from SHS and defect our glucose metabolic structure.7 12 14
The biological effect of SHS exposure on fasting glucose levels could be extrapolated from the effects of typical smoking. Nicotine stimulates pharmacologically the sympathetic nervous system in active smokers and insulin-antagonizing substances such as cortisol, catecholamine, and growth hormone.27 Also, It may influence the development of diabetes as side effects of nicotine have been reported, including the inhibition of gastric mortality and its influence on the differentiated emptying of solids and liquids, faster glucose absorption, and increased erythrocyte permeability to glucose.28–3031 In addition, a recent study found that smoking by using electronic cigarettes can likely increase the type 2 diabetes risk in a general population.32
Meanwhile, SHS that contains more than 7000 chemicals has been known as a risk factor for diabetes from long time ago. According to the 1964 Surgeon General’s Report, 2.5 million adults who were non-smokers died because of their breathing SHS. Especially, SHS as forced smoking can harm children and adolescents in their home, school, and public places. In this present study, we revealed that even though resolving the external exposure of SHS in middle adults, if we once had exposure to SHS as about 180 min/day, damaged glucose metabolic structure from SHS is not reversible. Thus, we can suggest the most important point through our study is the segregation from smokers, and the only way to fully protect non-smokers or young people who do not smoke is to eliminate smoking in all homes, worksites, schools and public places.
This finding also further highlights that type 2 diabetes is a heterogeneous disease with different pathophysiological pathways unknown related to smoking. In our results of this study, the SHS trajectory (‘High to low’ trajectory), which showed a higher risk of type 2 diabetes than other trajectory and sharply decreasing level of SHS exposure, had patterns of fasting glucose level similar to other trajectory during follow-up period (online supplementary figure 1). However, we found the differences in BMI or SBP at endline across trajectories. As regards that, the trajectory, which had about twofold risk of type 2 diabetes, had a steadily stable trend of BMI value as the level of obesity over follow-up time (online supplementary figure 2). In general, most middle-aged people can obtain chronic disease such as type 2 diabetes easily, because of ageing, weakness of physical ability, or deficiency in immune system. However, although the common ageing factors in our study did not make much difference in changes during the follow-up period, they differed greatly in the risk of developing type 2 diabetes. In this regard, our findings can be emphasized by estimating the extent of type 2 diabetes risk affected by SHS exposure accumulated in adulthood, apart from the incidence of type 2 diabetes by general ageing.
A major strength of this research lies in that it is based on longitudinal data derived from a national representative sample of middle-aged adults over a 14-year period. This study is the first study that performed trajectory modeling about SHS exposure level using these data in Korea. Through the trajectory modeling of this study, we were able to explore qualitatively differentiated patterns of change during the follow-up period for SHS exposure levels. The trajectory modeling allowed a posteriori identification of qualitatively distinct trajectories, thus overcoming misclassification and loss of information. And also, we also expanded our study to include diabetes and impaired fasting glucose. The association of trajectories of SHS exposure with risk of type 2 diabetes or impaired fasting glucose was then examined using Cox proportional hazards models. Our findings provide important new insight regarding the trajectories of SHS exposure among middle-aged adults and their associations with the risk of diabetes. These results suggest that the most important thing to escape from exposure to SHS is not to be fully exposed to SHS from a young age. However, it might be important to investigate whether SHS trajectories in childhood also display consistent and similar heterogeneity and whether this heterogeneity has similar implications for diabetes risk.
This study has several limitations. First, our study has a lack of SHS exposure observations in early young adulthood. However, our results are reasonable in that we used the general population representing Korea to target specific generations vulnerable to chronic diseases from a life course perspective. Second, this study included the limited sample that can be used with a unique study design. Due to the nature of follow-up observational studies, many measurements that can be used in the study are often forced to give up due to the failure of the population’s follow-up observations. However, to correct the bias of loss to follow-up, we made the weighting by using the IPCW approach and applied the weighting to Cox proportional hazards models to estimate the effect of developing type 2 diabetes.18 23 The trajectory modeling also has the advantage of being able to function in missing data.20 Third, SHS exposure levels at work were not available due to a lack of available information on the base data. The number of respondents to the question of exposure to SHS at work was about 550 in baseline. In fact, since the most detailed data investigated on SHS exposure in Korea are the base data of this study, future research needs to further investigate and include SHS exposure at home, and patterns of individuals’ behavior, such as workplaces, and other places with high potential for SHS. Fourth, the limitation of generalization to other ethnic may exist, as a racially heterogeneous cohort of Asians. Finally, in the results of this study, causality is not guaranteed.
In conclusion, latent SHS exposure trajectories identified four distinct patterns during the follow-up period, which showed influence to development of a type 2 diabetes event. It provides new insights that the trajectory had a sharply decreasing pattern of SHS exposure up to a level of the lowest exposure pattern, but it had a higher risk of type 2 diabetes as a twofold compared with the lowest exposure pattern. Our study can suggest as an aspect of life course approach that even though resolving the external exposure of SHS in middle-aged adults, elevated SHS exposure level up to above 180 min/day in early adulthood may suffer glucose metabolic structure in a way that is not reversible. And also it can highlight the importance of SHS exposure prevention across life span, and prognostic assessments and targeted strategies for high-risk individuals by using trajectory modeling.