Discussion
In our study, we analyzed a cohort of patients with type 2 diabetes who were managed in a community-based practice. Our results demonstrate that participants who followed the low carbohydrate, a high fat diet had superior glycemic reduction, as measured by A1C, compared with those who received UC at every visit. This finding was found to be significant at the end of follow-up even after accounting for age, sex, baseline BMI and insulin dosage. The improved A1C was accompanied by a significant 11.9% reduction in total body weight, with nearly 50% of patients discontinuing insulin a few months after starting the LCHF diet. By contrast, patients receiving UC had no significant change in glycemic control, non-significant changes in weight and increased insulin doses.
Our study adds to growing evidence that supports the LCHF diet in the treatment of type 2 diabetes and further demonstrates its effectiveness in real-world settings. Our results are consistent with prior studies of LCHF diets (defined as 5%–10% carbohydrates), reporting a significant reduction in A1C of >1% over a period of 12 weeks to 1 year.14 19–21 23 In particular, our results are most comparable to the Virta Health study,23 a remotely monitored intervention that implements the LCHF diet in patients with type 2 diabetes. At 1 year, the LCHF group showed a significant difference in A1C (−1.5%±0.2% (p<0.05)), comparable to similar results in our study over ≥3 months. LCHF patients in the Virta Health study also reduced or discontinued insulin and most other glucose-lowering medications, and consequently reduced the mean annual cost of medications per person by 46% over the first year on the LCHF diet. We found a similar reduction in glucose-lowering medications, supporting the hypothesis that the LCHF diet has the potential to improving patient outcomes and reduce costs. Americans spend about US$106 billion per year on diabetes prescription medications and supplies alone; this and other factors including the rising cost of insulin and its accessibility can directly impact daily care for patients with diabetes.28 Patients in our study had clinic visits covered by insurance. By contrast, virtual or remote LCHF programme cost each patient thousands of dollars, if not covered by their insurance29 and may be financially unfeasible for many patients. Thus, our study demonstrates the feasibility of implementing the LCHF diet in a community-based practice as part of an ongoing dietary treatment plan for the management of type 2 diabetes.
Baseline A1C, insulin use and duration of diabetes are often used as surrogate measures of diabetes severity, and used as predictors for partial or complete remission of diabetes after bariatric surgery.30 Similarly, our study demonstrates that higher A1C at baseline predicts a greater improvement in A1C during follow-up with the LCHF diet, while insulin dose was not related. Information regarding the duration of diabetes was not available for all patients in our study, but would be an important predictor to investigate in future studies.
Mechanisms for the improved glycemia observed with the LCHF diet include dietary carbohydrate restriction, lessening the need for endogenous insulin secretion and exogenous insulin administration as well as resulting in subsequent weight loss.31–33 By following an LCHF diet and restricting carbohydrate intake, plasma glucose levels decrease and accordingly, overall insulin levels are reduced, allowing for lipolysis and the use of non-esterified fatty acids as an alternate fuel source. Overall, a state of mild, physiological ketosis is induced.34 The reduction in hyperglycemia occurs often within days of starting on the LCHF diet, much before significant weight loss is observed.34
Despite studies demonstrating the efficacy of the LCHF diet in managing type 2 diabetes, its long-term benefit remains unclear. As such, the 2019 American Diabetes Association Guidelines on lifestyle management of patients with type 2 diabetes, while acknowledging the modest benefit in A1C reduction with LCHF diets, do not necessarily recommend for or against its implementation.11 The main uncertainty for any dietary intervention is that patients will, over time, revert to their previous lifestyle habits. For the LCHF diet in particular, other uncertainties include differing definitions of the LCHF diet, and how it is implemented. A recent meta-analysis of 36 studies by van Zuuren et al,35 including 33 randomized controlled trials and 3 case-control trials, compared the LCHF diet with a traditional low fat diet. This study found that the LCHF diet caused a significant reduction in A1C of −1.38% (95% CI −2.64% to −0.11%) in the first 8 weeks, but the mean difference in A1C was attenuated by 8–16 weeks (−0.55% (95% CI −0.93 to 0.17)) and onwards, through 26 weeks. Among these studies, the majority allowed ~40% carbohydrates, whereas only two defined ‘low carbohydrate’ as 5%–10% carbohydrates (or <20 g of carbohydrates) per day. Thus, the potential long-term effectiveness of the 5%–10% carbohydrate LCHF diet remains an area for future research.
Although studies of the long-term cardiovascular outcomes of the LCHF diet are lacking, there is evidence that key biomarkers of cardiovascular disease are improved, including serum triglycerides and HDL-C, which often correlate with improved hyperglycemia. We saw a non-significant reduction in triglycerides. Values for HDL-C either increased or remained stable in previous heterogeneous studies of the LCHF diet.15 17 18 20 22 23 We found no significant changes in HDL in either group, but note that both groups had initial HDL values in the normal range. We also found no significant changes in LDL levels in either group, consistent with previous studies.15 17 18 20 22 23 Two previous studies associated LCHF diets with the more favorable distribution of LDL particles (more non-atherogenic, large LDL particles25 27), although we did not measure this parameter. While controversial, some studies suggest patients who take insulin may have a dose-dependent increased risk of cardiovascular events.36–39 The possible increased cardiovascular morbidity may be related to weight gain and hypoglycemic events, which can accompany the use of sulfonylurea drugs and insulin particularly at higher doses. Highlighting the potential beneficial impact of the LCHF diet, in which sulfonylureas were routinely discontinued and insulin doses were initially reduced, and many of our patients in the LCHF group were able to further reduce or eliminate insulin.
To our knowledge, this is the first study to assess the LCHF diet in a community-based, ‘real-world’ setting while also collecting data on multiple metabolic parameters and over multiple visits, making the results generalizable. An important strength of our study was our adherence to a rigorous definition of LCHF macronutrient distribution of <20 g of carbohydrates (or <5%–10% of total calories) daily. In addition, patients kept detailed food logs that were regularly reviewed by a multidisciplinary team of healthcare providers to confirm adherence to the LCHF diet at each visit.
Our study also has important limitations. First, other factors may have contributed to the observed differences in A1C reduction between the LCHF and control groups. Notably, since this was not a randomized study, the LCHF patients were self-selected and may have been more motivated to comply with lifestyle intervention. However, this further underscores the potential benefits of healthcare providers discussing the LCHF diet as an option to their patients in clinical practice. The LCHF patients also had more face-to-face time with a healthcare provider than the UC group, due to the recommended bimonthly or monthly visits with the bariatric physician, which may have impacted their outcomes. Lastly, about half of the LCHF group elected to start phentermine which may have impacted weight; however, we found that A1C change was similar in participants who used phentermine compared with those that did not among LCHF patients. Future long-term studies to gain further metabolic insights into the LCHF diet are needed, including verification of nutritional ketosis with either serum or urinary ketone measurements while following the diet.
In summary, our study demonstrates that it is feasible and safe to implement the LCHF diet in a ‘real-world’ community practice setting among patients with type 2 diabetes, and that this diet may offer superior glycemic reduction, along with greater weight loss, compared with UC. The potential to reduce glucose-lowering medications including insulin may ultimately also help lower the personal and societal costs associated with type 2 diabetes. Although further studies are needed to evaluate the LCHF diet’s long-term efficacy and cardiovascular benefits, our results add to growing evidence that the LCHF diet in motivated patients may be a practical and effective method to improve glycemic control with several additional metabolic benefits, and should be considered as a viable treatment option in the management of type 2 diabetes.