Article Text

Download PDFPDF

Flash glucose monitoring reduces glycemic variability and hypoglycemia: real-world data from Spain
  1. Fernando Gomez-Peralta1,
  2. Timothy Dunn2,
  3. Katherine Landuyt3,
  4. Yongjin Xu2,
  5. Juan Francisco Merino-Torres4,5
  1. 1Endocrinology and Nutrition Unit, Hospital General de Segovia, Segovia, Castilla y León, Spain
  2. 2Research and Development, Abbott Laboratories, Alameda, California, USA
  3. 3Diagnostics Division, Abbott Laboratories, Irving, Texas, USA
  4. 4Department of Medicine, Universitat de València Facultat de Medicina i Odontologia, Valencia, Comunitat Valenciana, Spain
  5. 5Endocrinology and Nutrition Department, Hospital Universitari i Politecnic La Fe, Valencia, Spain
  1. Correspondence to Dr Fernando Gomez-Peralta; fgomezperalta{at}gmail.com

Abstract

Objective Observations in real-world settings support and extend findings demonstrated in randomized controlled trials that show flash glucose monitoring improves glycemic control. In this study, Spain-specific relationships between testing frequency and glycemic parameters were investigated under real-world settings.

Research design and methods Deidentified glucose and user scanning data were analyzed and readers were rank ordered into 20 equal sized groups by daily scan frequency. Glucose parameters were calculated for each group: estimated HbA1c, time below range (<70 and ≤54 mg/dL), within range (70–180 mg/dL), and above range (>180 mg/dL). Glycemic variability (GV) metrics were described and data obtained from sensors in Spain and worldwide were compared.

Results Spanish users (n=22 949) collected 37.1 million glucose scans, 250 million automatically recorded glucose readings, and checked glucose values via a mean of 13 scans/day. Estimated HbA1c, time below 70 mg/dL, at or below 54 mg/dL, above 180 mg/dL, and GV metrics were significantly lower in the highest compared with lowest scan rate group (39.6 to 3.9 scans/day). Time-in-range was higher for the highest versus lowest scan rate group at 15.6 vs 11.5 hours/day, respectively. GV metrics correlated positively with time below 70 mg/dL, at or below 54 mg/dL, above 180 mg/dL, and negatively with time-in-range. The relationship between glucose metrics and scan rate was similar in Spain and worldwide. However, time in hypoglycemia in Spain was higher in the groups with lower scan rates.

Conclusions As seen in clinical trials, flash glucose monitoring in real-world settings allows frequent glucose checks. High scan rates are associated with the favorable glycemic markers of increased time-in-range and reduced time in hyperglycemia and hypoglycemia, and GV. The same trends, with unique nuances, are observed in both Spanish and global data.

  • blood glucose monitoring
  • glycemic control
  • hypoglycemia
http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Footnotes

  • Contributors FGP, TD, KL, YX, and JFMT designed the study. KL, TD and YX performed the data analysis. FGP, TD, KL, YX, and JFMT all critically reviewed the manuscript and provided intellectual content and feedback. All authors reviewed the manuscript before submission. FGP is the guarantor of the study and takes responsibility for the content of the article.

  • Funding This work was funded by Abbott Diabetes Care.

  • Competing interests TD and YX are employees of Abbott Diabetes Care. KL is an employee of Abbott Diagnostics. FGP has taken part in advisory panels for Abbott Diabetes, Novartis, AstraZeneca, Sanofi and Novo Nordisk; has participated as principal investigator in clinical trials funded by Sanofi, Novo Nordisk, Boehringer Ingelheim Pharmaceuticals, and Lilly; and has acted as a speaker for Abbott Diabetes, Novartis, Sanofi, Novo Nordisk, Boehringer Ingelheim Pharmaceuticals, AstraZeneca Pharmaceuticals, Bristol-Myers Squibb, and Lilly. JFMT has participated as principal investigator in clinical trials funded by: GlaxoSmithKline, Lilly, Novartis, Novo Nordisk, Pfizer, Sanofi-Aventis, Bristol-Myers Squibb, AstraZeneca; has received conference funding from GlaxoSmithKline, Lilly, Merck-Sharp-Dohme, Novartis, Novo Nordisk, Pfizer, Sanofi-Aventis, Menarini, Janssen, Abbott, Kabi-Fresenius, Nutricia; and has collaborated as a consultant with Abbott, AstraZeneca, Esteve, GlaxoSmithKline, Lilly, Novo Nordisk, Novartis, Merck-Sharp-Dohme, Rovi, and Sanofi-Aventis.

  • Patient consent for publication Not required.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement Data are available upon reasonable request.

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.