Conclusion
This is the first study to investigate the effect of chronotype on device-measured physical behaviors in those with established T2DM. The results demonstrate that, after adjustment for total sleep duration, those with a preference for an evening chronotype had higher sedentary time, lower levels of light activity, lower MVPA and lower mean daily acceleration compared with both morning and intermediate chronotypes. For example, average MVPA was 56% lower in evening chronotypes compared with morning chronotypes, representing an absolute difference of ~10 min. The MX metrics and intensity gradient also suggest that, in addition to duration, differences also exist in the intensity of movement between chronotypes. For example, the M30 value for morning chronotypes was greater than 100 mg, which suggests that 30 min was spent at an intensity equivalent to a slow walk or higher,34 whereas the evening chronotypes accumulated their most active 30 min at a lower intensity (<100 mg, equivalent to ‘pottering around’).32 Those who reported a preference for an evening chronotype were also confirmed to have a later sleep onset time using accelerometer data. In addition, as well as evening chronotypes having lower levels of physical activity overall, the physical activity that was conducted occurred later on in the day.
The chronotype preference in this study (morning=25%, intermediate=52%, evening=23%) is broadly similar to that observed in the general population, although with a slightly larger representation of evening chronotypes in our cohort. For example, a large prospective, population-based cohort study (UK Biobank) demonstrated that 27% of individuals identified themselves as morning types, 63.9% as neither/intermediate and 9.1% as evening types.35 The average sleep duration in this cohort (morning=6.7 hours, intermediate=6.8 hours, evening=6.6 hours) is marginally lower (~0.5 hour) than other population based cohort studies that have used accelerometers to quantify sleep duration.36 Overall physical activity volume and intensity (MX metrics) were between 20% and 60% lower than those reported in office workers or other population based cohorts.33 37–40 Taken together, these collective results indicate that people with T2DM lead a lifestyle characterized by excessive sedentary behaviors and insufficient physical activity volume, with 97.9% of waking time spent in either sedentary behavior or light physical activity, which may be further exacerbated by an eveningness preference.
Our results also extend those from other studies that have examined both chronotype preference and self-reported physical activity. For example, Wennman et al examined the association between chronotype preference, leisure time physical activity and sitting time in ~5000 Finnish men and women.41 They reported that a self-assessed ‘evening type’ was typically associated with greater odds of engaging in higher amounts of sitting when compared with ‘morning types’. This difference in chronotype was also evident for total physical activity, where evening types had higher odds of engaging in low levels or negligible amounts of physical activity when compared with morning types.41 Similarly, a later bedtime and wake time, both evident in this cohort, have been associated with lower levels of device measured, free-living physical activity (MVPA) in young adults and self-reported physical activity levels in working women.17 42
Although the underlying mechanisms are not completely understood, an evening preference may exacerbate the clustering of unhealthy behaviors (eg, physical inactivity), resulting in an increased prevalence of hypertension,10 a higher BMI, increased odds of developing T2DM9 and poorer glycemic control in those with established T2DM.43 This was evident in our cohort, as those with an evening chronotype had the highest BMI and HbA1c levels, when compared with morning and intermediate chronotypes. The lower physical activity levels seen in evening chronotypes may also be influenced by social (ie, activities not coinciding with regular social schedules) and physical environment aspects (ie, safety concerns). Moreover, personal/socially imposed alterations in sleep, as demonstrated by the differences in sleep and physical activity timing, may result in a ‘circadian misalignment’.44 For example, an enforced early wakeup may reduce the likelihood of engaging in physical activity due to the resulting tiredness or time constraints of family responsibilities in the evening. This may make a natural preference for engaging in physical activity later in the day more difficult to achieve.
Due to its wide-ranging health benefits, minimal cost and side effects and accessibility, physical activity may be an attractive non-pharmacological treatment option that could also theoretically improve circadian misalignment, through alterations in temperature regulation and/or hormone levels.45 46 In humans, the circadian clock is divided into two distinct parts, the master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks, situated in the peripheral tissues (eg, skeletal muscle).47 The peripheral clocks are entrained by the light-dependent regulation of the SCN and by other non-photic zeitgebers (eg, physical activity) for the human circadian system,48 thus acting in an SCN-independent manner.49 Therefore, in many individuals, especially in people with a late chronotype, an advance of the internal circadian rhythm through informed timing of physical activity may be useful as an adjunct therapeutic strategy to foster chronobiological homeostasis and better align internal rhythms with the environment and standard social schedules.
This analysis has strengths and limitations. Most notably, it provides novel evidence in a T2DM population recruited primarily through primary and secondary care using device measured quantification of physical behaviors. The research-grade monitors used to quantify these physical behaviors also allowed for the generation of high resolution raw data, which subsequently facilitated the development of novel activity metrics used in conjunction with more traditional outputs and allowing the physical behaviors to be timestamped. In addition, participants were phenotyped with regard to anthropometric and demographic variables. As such, we were able to investigate and adjust for potential confounders. That said, although cross-sectional data are convenient for hypothesis generation, it does limit the scope of the results and precludes the ability to make causal inference.
In this analysis of 635 participants with T2DM, an evening chronotype was associated with lower physical activity across a range of metrics and higher sedentary time. Overall, there is a need for large-scale interventions to be implemented into diabetes care which support people with T2DM to initiate, maintain and achieve the substantial benefits of an active lifestyle. This may be particular pertinent for those with an ‘eveningness’ preference, where personalized physical activity interventions may need to place additional emphasis on a whole-day approach, as emphasized by their later sleep onset time and consistently later physical activity time compared with morning and intermediate chronotypes. The focus on low intensity activity is likely to be important in these individuals, as our results suggest that purposeful MVPA is likely to be on the outer reaches of the normal day to day experiences. Even small increases in the percentage of time spent in such activities would be useful toward increasing the volume and distribution of activity.