Discussion
Here, we report for the first time a differential DNA methylation profile in peripheral blood of SGA infants aged 12 months, its association with BMI, body composition parameters and markers of insulin resistance at 12 and at 24 months, and its potential contribution to an altered fat distribution on postnatal catch-up in weight. We identified n=41 differentially methylated CpG sites in gene promotor regions; 13 CpG were hypermethylated and located in GPR120, NKX6.1, CPT1A, IGFBP4 genes and 28 CpG were hypomethylated along the CHGA, FABP5, CTRP1, GAS6, ONECUT1 and SLC2A8 genes.
GPR120 is a functional receptor for n−3 fatty acids and a key regulator of adipogenesis, as well as of energy metabolism, insulin secretion and inflammation.20–22 GPR120 deficiency leads to obesity, insulin resistance and hepatic steatosis in mice fed a high-fat diet.23 In contrast, activation of GPR120 increases insulin secretion, protects pancreatic β cells from inflammation,24 and reduces fat mass and body weight through activation of brown adipose tissue (BAT) thermogenesis25; GPR120 is also required for neonatal adaptive thermogenesis in mice.26 We have previously reported that GPR120 is hypermethylated in cord blood of SGA infants and that it associates with birth weight and reduced fat mass across early infancy, suggesting that GPR120 could be among the mediators of early fat mass accretion via modulating adipogenesis and lipogenesis.13 Here, we show that this methylation pattern is maintained in late infancy, and associates with lower BMI Z-scores and less fat mass, and with higher HOMA-IR. IGFBP4, which controls adipose tissue expansion by suppressing IGF-I signaling and angiogenesis promotion,27 was also hypermethylated in SGA infants. Overall, the combined abnormal methylation of GPR120 and IGFBP4 and ensuing deregulation could result in an impaired adipogenesis in SGA infants.
NKX6.1 is a transcription factor playing a key role in prenatal β-cell differentiation and in postnatal β-cell proliferation and function.28 This gene was found to be hypermethylated and downregulated in SGA infants at birth,13 and here we show that this pattern is still detectable at age 12 months. Cells lacking NKX6.1 are unable to express PDX1 and MAFA, both transcription factors needed for the maintenance of β-cell identity and function.29 Interestingly, a recent report showed that GPR120 prevents lipid-induced β-cell damage through regulation of PDX1 expression. Moreover, ONECUT1—a hepatocyte nuclear factor with a programmed downregulation during pancreas development—acts as MAFA suppressor, and the inappropriate reactivation of this transcriptional regulator occurs in diabetes.30 31 It is thus tempting to speculate that the abnormal methylation of GRP120 and NKX6.1 in SGA infants, already detectable at birth and ongoing at age 12 months, together with the hypomethylation of ONECUT1, may negatively affect β-cell number, as suggested by the association between the methylation status of these genes and HOMA-IR, fat mass and BMI Z-scores. At age 24 months, SGA infants still have normal levels of IGF-I and HMW adiponectin, less fat mass and are insulin sensitive; however, by age 3 years, SGA children develop high IGF-I levels, a thicker carotida and lower concentrations of HMW adiponectin,32 supporting the notion that the impairment of insulin action may occur from age 2 years onwards. This phenotype aligns well with the abnormal methylation by age 12 months of several genes related to the control of glucose and lipid metabolism. For example, FABP5, which is involved in the regulation of adipose tissue function and inflammation33 34 was hypomethylated in SGA infants, and transgenic mice models have shown that FABP5 overexpression impairs glucose tolerance, which is in turn reverted in FABP5 knockout mice33; FABP5 also plays a role in the development of carotid atherosclerosis.35 In addition, CTRP1 was also hypomethylated in SGA infants, and is reported to increase in obesity, fatty liver disease, atherosclerosis and type 2 diabetes, and to be associated with major adverse cardiovascular events.36 37
At age 6 years, SGA infants are more insulin resistant and have more pre-peritoneal and hepatic fat than AGA infants.32 Disruption of lipid homeostasis and reduced mitochondrial function are among the mechanisms that could contribute to this sequence of events. CPT1A, a key regulatory enzyme of β-oxidation required for transport of long-chain fatty acids into mitochondria, was hypermethylated in SGA infants. A decrease in fat oxidation may be followed by fat accumulation; for example, in rodents, the inhibition of fat oxidation results in an increase in intracellular lipids and a decrease in insulin action, whereas in humans an increased respiratory quotient (RQ), indicative of decreased fat oxidation, predicts weight gain and ectopic fat storage and is associated with a deterioration of insulin sensitivity.38 39 Inversely, overexpression of CPT1A in the liver of obese mice reduces inflammation and improves insulin signaling.40 Recently, epigenome-wide association studies have disclosed the causal role of CPT1A methylation in type 2 diabetes41 and the association between intron 1 CPT1A methylation and gestational BMI.42
SLC2A8, also known as GLUT8, is a glucose and fructose transporter highly expressed in oxidative tissues and required for the development of fructose-induced hepatic steatosis.43 SLC2A8 hypomethylation could additionally contribute to the higher hepatic fat fraction in SGA infants since overexpression of SLC2A8 in hepatocytes represses PPARγ and impairs fatty acid metabolism.44
CHGA is a prohormone secreted by neuroendocrine tissues serving as precursor of biologically active peptides including PST (pancreastatin) that interfere with insulin action. PST-treated adipocytes show a decrease in insulin-stimulated lipogenesis,45 whereas CHGA null mice display increased insulin sensitivity,46 even after a diet-induced obesity, highlighting the importance of CHGA–PST interaction in the development of insulin resistance.47 The hypomethylation of CHGA in SGA infants could hamper further subcutaneous adipogenesis favoring ectopic fat storage on catch-up in weight by inducing adipose tissue dysfunction.
The relevance of GAS6 hypomethylation in SGA infants remains unclear since its role in cancer, obesity, inflammation and insulin resistance remains controversial.48–50 GAS6 is a member of the vitamin K–dependent protein family that binds to TAM (Tyro3, Axl and Mer) receptors; and high and low levels of GAS6 have been reported, respectively, in overweight and obese adolescents,49 and in patients with type 2 diabetes.50
The limitations of the present study include the relatively small size of the studied population, the absence of gene expression assessments, the lack of methylation analysis at age 24 months, the lack of adjustment for cell composition in peripheral blood and the absence of methylation/expression assessments in insulin-target tissues due to ethical restraints. The strengths include the strict inclusion criteria, the use of the same methods over time and the prospective design of the study, allowing to assess the associations of the methylation patterns with endocrine-metabolic and body composition markers over the first 2 years of life.
Overall, our results strengthen the notion that an adverse intrauterine environment can induce long-term changes in gene expression through epigenetic mechanisms, which in turn can predispose to metabolic disorders.
In conclusion, we identified altered epigenetic marks in peripheral blood of SGA infants in genes involved in the control of adipogenesis and energy homeostasis that may exert long-term programming effects and thus increase the risk for obesity and diabetes in this population.