Introduction
Diabetes mellitus (DM) is a chronic metabolic disorder that has reached epidemic levels around the world.1 In China, there has been a sharp increase in diabetes prevalence in the past few decades, and currently 11.4 million people have diabetes.2 From both clinical and public health perspectives, there is a critical need to develop cost-effective strategies to prevent diabetes. Vitamin B12 is a coenzyme in the one-carbon metabolic pathway involved in the synthesis of methionine and pyrimidine and purine bases. Deficiencies in vitamin B12 and associated DNA damage and subsequent faulty repair are known to contribute to the development of vascular diseases, cancer, and some birth defects, and can lead to hyperhomocysteinemia. Often related to folic acid deficiency, vitamin B12 has been identified as a risk factor for both hypertension and atherosclerosis.3
To date, most studies on vitamin B12 and DM have been centered on vitamin B12 deficiency among existing patients with diabetes. The association between metformin use and low vitamin B12 levels has been supported by various levels of evidence.4 Because ileal vitamin B12 absorption is a calcium-dependent process, and metformin is known to have an effect on calcium-dependent membrane action, patients with type 2 diabetes usually developed a marked reduction in serum vitamin B12 while being treated with metformin.5 However, the risks and benefits of vitamin B12 on future risk of DM are not clear due to inconsistent results of previous studies. A cross-sectional study in a South Indian population showed that higher vitamin B12 levels decreased the risk of DM.6 Another longitudinal randomized control trial study showed no difference in the incidence of type 2 diabetes mellitus between the vitamin B12-supplemented group as compared with the non-supplemented control group.7 The current study addresses an important yet controversial topic of whether vitamin B12 is associated with DM.
This current study was motivated by the findings of the US National Health and Nutrition Examination Survey (NHANES)8 which showed that vitamin B12 levels in patients with DM without metformin were significantly higher than those in the general population. However, the NHANES is a cross-sectional study, and in order to address whether vitamin B12 levels that are higher than the optimal range are a risk factor for developing DM, a prospective cohort study would be required to assess the temporal and dose–response relationship.
In this report, we analyzed a total of 16 699 participants with hypertension from the China Stroke Primary Prevention Trial (CSPPT), with pertinent baseline data and a mean follow-up of 4.5 years. Our primary objective is to perform both cross-sectional and longitudinal analyses with the aim of determining whether the findings of the NHANES could be replicated in a Chinese population, and furthermore whether there is a prospective and dose–response association between baseline vitamin B12 levels and risk of new-onset DM. Among a subset of the sample (n=4366) with both baseline and exit vitamin B12 measurements, we further analyzed the relationship between the change in vitamin B12 levels and the change in fasting blood glucose (FBG) levels from baseline to the exit visit as the secondary objective.