Background
Global estimates suggest that 463 million individuals have diabetes as of 2019 and that this number will increase to 700 million by 2045.1 More than 90% of these individuals have type 2 diabetes, a condition that is characterized by considerable heterogeneity in its etiopathogenesis and clinical presentation. This heterogeneity has significant implications on the treatment and prognosis of patients with this condition.
Recently, distinct ‘clusters’ or subgroups of individuals with type 2 diabetes have been identified in a Scandinavian population of 8980 individuals, based on five parameters representing the clinical presentation as well as the presence of insulin resistance and beta-cell dysfunction.2 These five subgroups have been termed severe autoimmune diabetes, severe insulin deficient diabetes, severe insulin resistant diabetes, mild obesity-related diabetes and mild age-related diabetes. Further analyses of these subgroups have shown that such clustering might have implications with respect to the risk of diabetes complications as well as selection of the most appropriate treatment. However, as the above study has been performed on a white Caucasian population, there is still no clarity on whether this classification is applicable to individuals with diabetes belonging to other ethnic groups.
Asian Indians (South Asians) represent an ethnic group with high predilection for developing type 2 diabetes; indeed, some of the largest increases in diabetes prevalence have been reported from the South Asian region. Type 2 diabetes in Asian Indians differs from that in white Caucasians in a number of significant ways. They tend to develop diabetes at a younger age and at lower levels of obesity than do white Caucasians. They also tend to progress faster from stages of ‘pre-diabetes’ to frank diabetes than members of other ethnic groups. The ‘Asian Indian phenotype’, characterized by high levels of abdominal fat and increased insulin resistance even at low levels of body mass index (BMI), has been postulated as a reason for this increased propensity to develop type 2 diabetes.3 However, recent studies suggest that beta-cell dysfunction occurs quite early and rapidly in Asian Indians.4 Type 2 diabetes in Asian Indians therefore appears to have a slightly different pathophysiology, with severe insulin deficiency being the primary defect in contrast to white Caucasians, in whom the main driver of diabetes is obesity and consequent insulin resistance.
It is therefore possible due to the above and the well-known younger age at diagnosis that clusters of type 2 diabetes identified in Asian Indians based on parameters used in the Western population might not behave exactly in the same manner with respect to treatment outcomes and risk of complications. In this paper, we attempt to identify distinct clusters of type 2 diabetes in Asian Indians and to look at the clinical implications and outcomes of this clustering. This study is part of the INdia-Scotland Partnership for pRecision mEdicine in Diabetes (INSPIRED) project.