Introduction
Diabetic foot (DF) is a common diabetic complication,1 and has an adverse effect on physical functionality and quality of life.2 Approximately 6.3% of patients with diabetes worldwide have DF,3 and almost a quarter have lifelong foot ulcers.4 Beyond pain, falls and amputation are two typical outcomes in diabetes with DF, and their risks are increased during the disease course. Given the increasing global prevalence of diabetes, early prevention of DF is of tremendous importance to patients at risk of DF. Management of DF prioritizes early prevention because of its high burden and healing difficulty.5 6
Results from related observational studies demonstrated that people with or at risk of DF would show abnormal lower limb biomechanical characteristics, such as reduced range of movement (ROM) of joints, delayed muscle activations, altered forces in the foot, and changes in gait mechanics.7 These biomechanical changes may finally cause elevated plantar pressure during gait and promote the development of diabetic foot ulcerations (DFUs). Accumulated evidence has demonstrated that the elevated plantar pressure is a valid risk assessment indicator for DFUs,8 and even continuous plantar pressure monitoring can help reduce the risk of DFU recurrence.9 Relieving plantar pressure in daily activity through the use of therapeutic footwear is highly recommended for the prevention and healing of DFUs.10 However, an emerging body of research has identified positive adaptations to overload stress,11 and some researchers have been calling to shift the paradigm by including weight-bearing exercise for people with diabetic peripheral neuropathy (DPN).12
To date, exercise has been well evidenced in improving glycemic control,13 14 vascular structure and function of the lower limbs,14 and peripheral nerve function.15 This indicates the efficacy of exercise interventions in preventing DFUs.5 16 However, no consensus has been reached on the most effective exercise prescription,17 18 although a recent meta-analysis reported the priority of combined exercise against either aerobic or resistance training alone.5 A common problem that exists in the related intervention studies is the absent report of rationale for exercise intervention.5 16 Since ankle and foot biomechanics are generally altered in patients with diabetes regardless of the presence of neuropathy,19 a specific exercise for ankle and feet may be more appropriate in the prevention and treatment of DF complications.20 This is in agreement with the updated guidelines on exercise and diabetes proposed by the American Diabetes Association (ADA).21 The ADA has put a greater focus on the inclusion of flexibility exercise and balance training to increase joint ROM, enhance joint mobility and balance.
Tap dance (TD) is an indigenous American art form and wooden or tap shoes are used to create rhythmic sounds and patterns by striking the tap or sole against the floor.22 Such an exercise form provides load and continuous stimulation to the plantar surface by strengthening ankle and foot movements. Compared with practitioners of other sports or dance forms, tap dancers have a lower injury rate.23 Biomechanical analysis has demonstrated smaller ground reaction and joint forces in the percussive footwork of TD.24 In addition, similar physiological responses (ie, oxygen uptake, respiratory exchange rate, and heart rate) were found between TD and graded exercise, indicating that the TD would be a useful exercise modality for aerobic fitness and cardiovascular health improvement.25 Biricocchi et al conducted a case study and found that TD as an intervention form would enhance static and dynamic balance for a child with type 1 congenital myotonic muscular dystrophy.26 Despite these promising indications for the potential benefits of TD on reducing risk factors of DF, few relevant studies have been conducted. Thus, this study aimed to examine the effects of TD on dynamic plantar pressure, static postural stability, ankle ROM, and lower extremity functional strength in older patients at risk of DF.