Conclusions
Given the situation, when hospitals and ICUs are at full capacity/overcrowded with COVID-19 cases, it is imperative to identify ahead of time (at the time of admission using existing records) individuals at risk of developing severe diseases and potentially in need of intensive care, especially for T2D population that is disproportionally affected by COVID-19.4–8 Here, we have discovered the remarkable impact of 2 to 3-year longitudinal glycemic control on the COVID-19-related severity in a cohort containing 16 504 patients with COVID-19 selected from more than 2.3 million people with T2D listed in a US population-based data set with a broad distribution of geographical regions and ethnicities. Longitudinal HbA1c, a simple, universal, and cost-effective measurement with a reasonable link to the pathophysiology of COVID-19 progression, can be used to quantitatively assess the risk of intensive care in the general T2D population at the time of admission to allow proper monitoring and management of subsequent care. Among the common medications for people with T2D, we found that the combined use of glucose-lowering agents as well as corticosteroids was associated with a decreased risk of COVID-19 severity, while the antihypertensive medications either had no significant effect or were associated with an increase in severity risk. Furthermore, consistent with previous investigations,8 we find that three types of common diabetic comorbidities including hypertension, nephropathy, and obesity increase the COVID-19 severity in patients with T2D.
It is noteworthy that inadequate glycemic control over time could also lead to the development of the diabetic comorbidities noted above.25 28 Previously, we have identified that the occurrence rate of several diabetic comorbidities is significantly correlated to the 2-year longitudinal HbA1c.13 As quantification of the duration associated with these comorbidities and the severity of the comorbidities continues to be challenging, longitudinal HbA1c could account for the increased risk of COVID-19 severity caused by comorbidities. Additionally, our findings indicate that the gender and age-related differences in COVID-19 severity are comparable among T2D population and general population.29 30
Demonstrated through the Kaplan-Meier survival model, we initially estimated the unadjusted risk of ICU usage solely stratified by diabetes status and longitudinal HbA1c levels. By the end of the study period, there was a pronounced increase in ICU use risk in T2D population than non-diabetic controls. The elevated risk of ICU use was clearly distinguishable in people with poor glycemic control compared with those with adequate glycemic control. The value and utility of 2 to 3-year longitudinal HbA1c was further confirmed in the Cox proportional hazards model where other potential risk factors were adjusted. Grouping the cohort by adequate and poor glycemic control, longitudinal HbA1c level was shown to be the largest independent risk factor in the model. Previous studies have investigated the relationship between blood glucose and HbA1c with COVID-19. The results show that a single-point HbA1c at time of admission was either not related to COVID-19 outcomes21 31 32 or it was associated with increased COVID-19-related mortality.8 However, one study did indicate a significant positive association between single-point preinfection HbA1c, measured within 6 months, and the severity of COVID-19 illness.33 In contrast to these previous investigations, our study considers a longer period glycemic control for an individual as an indicator for history of diabetes and severity (which are usually harder to evaluate) by using the 2 to 3-year longitudinal HbA1c. Here we successfully identified the 2 to 3-year longitudinal HbA1c to be a significant risk factor for COVID-19-related severity that can serve as a key clinical parameter related to management of COVID-19 for an individual patient and for assessing ICU use. Furthermore, longitudinal HbA1c is physiologically more relevant because it captures hyperglycemia over an extended period and hyperglycemia leads to accumulation of AGEs through the diffusion-driven process of non-enzymatic glycation. Also the excessive accumulation of AGEs could indeed result in the loss of lung function and respiratory efficiency through a reduction in lung muscle strength and elastic recoil capacity.11
Although single-point HbA1c (last record since 2019) was shown to be a significant factor related to the risk of ICU use in our statistical model, its relatively low HR, when compared with longitudinal HbA1c, shows that the risk of ICU use is underestimated by such an association. In contrast, longitudinal HbA1c average presents a more significant and evident association. Our study demonstrates the different associations with risk of intensive care when different HbA1c aggregation periods are selected. It was shown that the longer the period over which HbA1c is aggregated, the stronger its association with COVID-19-related severity is. Furthermore, when HbA1c was only aggregated close to the admission date (3–6 months prior to COVID-19 diagnosis), the relationship between HbA1c and COVID-19-related severity was not significant. Although this lack of significance could be attributed to the use of a small sample (n=2040) compared with the full original cohort (n=16 504), aggregating HbA1c in this smaller time window yielded the lowest HR of HbA1c (1.27) in comparison to the other groups. Conversely, 2 to 3-year HbA1c and 3 to 4-year HbA1c presented the highest HR. Since the increased risk by longitudinal HbA1c is essentially not different between these groups, it is suggested that a saturation of association might have been reached after aggregating the HbA1c values for 2–3 years. Considering the difficulties of gathering HbA1c information for extended period, 2–3 years is a moderate time window which is sufficient for assessment of COVID-19-related subsequent care.
Four types of commonly prescribed medications for people with T2D (two glucose-lowering agents: metformin and insulin, two blood pressure-lowering agents: ACEIs and ARBs) were examined to determine whether their continued use interferes with COVID-19 progression. Corticosteroids, although imposing the risk of elevating blood glucose level, have shown beneficial effects in reducing COVID-19 mortality in the general population. The evaluation of all medications should be interpreted with caution since this study is not a randomly controlled trial. Insulin, when administered individually (ie, no metformin use), despite having an HR of 0.93, did not demonstrate a significant effect. In contrast, consistent with previous studies,34 metformin individually was associated with significantly lower risk of ICU use by 12%. It can be hypothesized that the beneficial effects of metformin besides glycemic control, such as anti-inflammation and inhibition of viral entry, could help prevent the patients with T2D from becoming critically ill, whereas the stronger glucose-lowering effect of insulin might be more crucial in patients with T2D who are already in a critical condition. It is worth noting that the metformin users potentially have a shorter history of diabetes and less severity in terms of diabetic comorbidities. That being said, the association of medications was adjusted based on their longitudinal HbA1c level and comorbidity conditions. The group with combined use of metformin and insulin displayed the best effect compared with the individual use, suggesting that more intensive glycemic control may further reduce the risk of COVID-19-related severity in people with T2D.
The effect of ACEIs was shown to be not significant. Interestingly, ARBs did associate with higher risk of ICU use. A previous observational study also reported that the antihypertensive medications are correlated with increased risk of COVID-19-related mortality in people with T2D.8 Besides the mechanism that antihypertensive medications could increase ACE2 expression on membrane which allows higher level of viral entry, this result is most likely due to confounding by indication. Although the associations of ACEIs and ARBs were adjusted for the conditions of hypertension and CAD, the systolic blood pressure at the time of COVID-19 diagnosis was not available for our analyses. Yet, others have shown that the negative effect of antihypertensive medications remains even after adjustment for systolic blood pressure.8 ARBs specifically were often used as a substitute for people more likely to develop angioedema from ACEIs. Angioedema has been hypothesized to favor COVID-19 progression, and in turn COVID-19 can further exacerbate pre-existing angioedema condition.35 Therefore, people with T2D who were using ARBs might essentially be at higher risk for developing critical conditions related to COVID-19.
The three generic forms of corticosteroids were found to be most beneficial among all selected medications in reducing the risk of ICU use by 28%. This finding is similar to previously summarized association of corticosteroids and lower all-cause mortality in general population infected with COVID-19.36 Despite the observations that administration of corticosteroids could worsen glycemic control,19 our results suggest that previous or ongoing treatment of corticosteroids might still be effective in people with T2D. Notably, the number of users for the selected corticosteroids in this cohort is relatively small (n=662, 5.4%). Among this group of people, about 65% were either on metformin or insulin. It is possible that the corticosteroid users in this cohort potentially had better glycemic control at the time around COVID-19 diagnosis. However, in the HbA1c aggregation window, the longitudinal HbA1c level between corticosteroid users (average longitudinal HbA1c: 7.5) and non-corticosteroid users (average longitudinal HbA1c: 7.6) was not much different. Altogether, the positive association between corticosteroids and COVID-19-related severity should be treated cautiously. The decision of using corticosteroids should be considered along with proper management of glycemic level and on a case-by-case basis.
Two limitations of the study should be noted. First, the study used the individual’s average of 2 to 3-year HbA1c. Our results did show that the average value itself is sufficient to properly evaluate the risk of COVID-19-related severity. Nevertheless, the longitudinal trend and deviation of HbA1c level during the 2 to 3-year window could potentially play an additional role in the association and requires future investigations. Second, the medication use was based on the administrative claims data. It is rational to assume that the medication use is continued during the short identification window. However, the individuals’ medication adherence could not be verified. The daily dosage information was also not included in the analysis.
In conclusion, here we identified that the 2 to 3-year longitudinal glycemic control is most significantly associated with COVID-19-related severity in people with T2D. Proper management of longer period glycemic level could potentially be essential in reducing the risk of developing severe diseases from COVID-19. This method using HbA1c history could also allow for personalized assessment and management of subsequent care related to COVID-19 in advance. Additionally, the combined use of metformin and insulin and the use of corticosteroids are effective to prevent patients with T2D from becoming critically ill from COVID-19.