Discussion
Using ~45 000 HbA1c measurements from repeated population-based surveys during 1994–2016 in Tromsø municipality in Norway, we found that the prevalence of undiagnosed diabetes was lower among those with higher education, and we found a similar pattern for undiagnosed diabetes as a proportion of all diabetes. Our hypothesis that people with undiagnosed diabetes tend to seek medical care less often was not supported as most participants with undiagnosed diabetes had been in contact with a GP to the same extent as participants without diabetes.
The proportion of undiagnosed cases depends on the diagnostic criteria used, with a higher prevalence of undiagnosed cases typically found when using OGTT, and to some extent FPG, compared with a definition based on HbA1c.24 25 The Tromsø Study has been repeated at regular intervals and participants were provided information about abnormal values, and we believe that this may have affected the proportion of undiagnosed diabetes and the screening in the Tromsø municipality,12 especially in the Tromsø 5 and Tromsø 6 surveys where many individuals had participated in previous survey.
Social inequality in health is a major public health challenge.26 Understanding determinants of such inequalities is critical to improve the healthcare system and get optimal health treatments to all individuals. A previous study of older women in the UK based on FPG did not report any association between socioeconomic status and undiagnosed diabetes.27 In a study using National Health and Nutrition Examination Survey (NHANES) data (men only), higher proportion of undiagnosed cases was found in those with low education compared with those with high education, consistent with our results.18 Our findings that education and income were associated with undiagnosed diabetes were consistent with a British study on an annual sample from 2009 to 2013.28
It is important to clarify the extent to which people with undiagnosed diabetes have been in contact with the healthcare service, as this could identify a room for improvement in the system and there are few published studies on this topic.11 29 30 Our results indicate that most participants with undiagnosed diabetes had been in contact with a GP during the last 12 months, similar results were found in a Danish study where 72% of those with undiagnosed diabetes had been in contact with their GP.29 Clinical guidelines typically advise GPs to test HbA1c in patients with risk factors such as high BMI, high age, and family history of diabetes. However, many of the screening-identified participants in our study had in fact high BMI or age. In contrast to our findings, studies from Germany30 and the USA11 found that those with undiagnosed diabetes reported less frequent contact with the health system in the previous year.
We could speculate that opportunistic screening for diabetes has increased over time in Norway, based on the decreased proportion in undiagnosed diabetes and the increased availability of HbA1c point-of-care testing. HbA1c was not recommended as a diagnostic test in Norway before 2012, however GPs may have started using the test before that time.
Strengths and limitations
The main strength of the present study was the use of a large population-based sample and a high number of HbA1c measurements. Data collection throughout two decades enabled us to examine the association of education on undiagnosed diabetes prevalence over time. We also provided updated estimates of undiagnosed diabetes across categories by sex, age groups, and BMI. Our study included people born over a long period of time, during which the average educational attainment has increased. We controlled confounding by time trends by adjusting for both age and period of survey.
HbA1c test is highly specific but has poor sensitivity to diagnose diabetes compared with other methods, especially OGTT.31 Some misclassification is therefore expected. Furthermore, we classified cases based on one single test, without the recommended confirmatory test for clinical diagnosis in asymptomatic individuals.11 On balance, however, HbA1c is probably the best single test for use in epidemiological studies.25 During the study period, the WHO diagnostic criteria for diabetes used changed twice. In 1999, the diagnostic cut-off for FPG was lowered from 7.8 mmol/L to 7.0 mmol/L, that may have led to a lower prevalence of known diabetes in the earliest data collection (Tromsø 4). However, before 1999, OGTT was commonly regarded as a gold standard for diagnosis and use for this test in clinical practice would have the opposite effect due to its higher sensitivity. Another limitation of our study is that HbA1c was measured using different methods in the four data collections, and HbA1c instruments were not calibrated across surveys.
The pooled estimate should be interpreted with caution due to differences in sampling procedures across the surveys, although we have adjusted for the main confounders in the regression analysis. Some age groups were over-represented in some surveys, however, we age standardized the data using the last survey (with a high number of participants) to enable comparison between surveys. The pooled results of education and diabetes are driven mostly by results from Tromsø 6 and 7 due to larger number of participants. However, while there was some variation in point estimates of educational gradient over time, this variation was not statistically significant. In the latest survey, the question on self-reported diabetes may have introduced a possibility of misclassification by including an option to report previous but not current diabetes. While diabetes is normally a chronic disease, participants who previously, but not currently received glucose-lowering medication, may have answered that they previously had diabetes. However, the sensitivity analysis did not show any difference in the association with education and undiagnosed diabetes when these participants were included.
Diabetes status was self-reported. While this may be regarded a weakness, several studies had reported a high concordance between self-reported diabetes and medical records.32–34 As most other screening studies, we could not distinguish between type 1 and type 2 diabetes, but type 2 diabetes is known to constitute around 90% or more of all diabetes in this age group. We cannot rule out that some women with previous gestational diabetes may have reported having had diabetes. In the last survey, most of these women are likely to have reported having had diabetes previously (and not currently), and we therefore believe that gestational diabetes erroneously reported as known diabetes has not seriously biased our result (women who were currently pregnant were removed from the analysis so current gestational diabetes cannot have influenced our results).
Population-based studies may be prone to selection bias, due to healthier participants being more willing to participate.35 However, individuals with undiagnosed diabetes may be ‘symptom free’ in most of the cases. The Tromsø Study is representative for the inhabitants of Tromsø municipality in the studied age groups, with most of the participants being Caucasian, however, ethnic minorities are under-represented.
In conclusion, undiagnosed diabetes was lower among participants with tertiary education, both in prevalence and as a proportion of all diabetes. There was no difference in the proportion of participants in contact with their GP among undiagnosed diabetes compared with participants without diabetes. Knowing the proportion of undiagnosed diabetes and the distribution in different socioeconomic strata may help to develop targeted strategies in screening and prevention.