Design of and rationale for the Japan Diabetes Optimal Integrated Treatment study for 3 major risk factors of cardiovascular diseases (J-DOIT3): a multicenter, open-label, randomized, parallel-group trial

Kohjiro Ueki,1,2,3,4 Takayoshi Sasaki,1,3,4 Masayuki Kato,5 Yukiko Okazaki,1 Sumie Okahata,6 Hisayuki Katsuyama,7 Mikiko Haraguchi,1 Ai Morita,1 Ken Ohashi,6 Kazuo Hara,9 Atsushi Morise,10 Kazuo Izumi,11 Yasuo Ohashi,12 Mitsuhiko Noda,13 Takashi Kadowaki,1,4 the J-DOIT3 Study Group

ABSTRACT

Objective: Multifactorial intervention including the management of levels of blood glucose (BG), blood pressure (BP), and lipids has been suggested to decrease cardiovascular disease (CVD) risk. However, the target ideal and feasible levels for these individual parameters have not been fully evaluated. In this study, we examine the hypothesis that stricter control compared with the current targets in the Japanese guideline for BG, BP, and lipids could efficiently and safely reduce CVD risk.

Research Design and Methods: We screened patients with type 2 diabetes and hypertension and/or dyslipidemia among 81 hospitals in Japan and allocated them into 2 groups: the intensive therapy group (ITG) and the conventional therapy group (CTG). For the 2 respective groups, the target for glycated hemoglobin (HbA1c) is <6.2% (44 mmol/mol) and <6.9% (52 mmol/mol) for BP it is <120/75 mm Hg and <130/80 mm Hg, and for low-density lipoprotein cholesterol it is <80 mg/dL (<70 mg/dL in the presence of CVD history) and <120 mg/dL (<100 mg/dL in the presence of CVD history). The primary end point is the occurrence of CVD events or death by any cause. These patients are scheduled for stepwise intensifications of medication for BG, BP, and lipid control in the ITG, until the number of primary end point events reaches 250.

Results: We recruited 2542 patients and randomly allocated 1271 into the ITG and 1271 into the CTG between June 2006 and March 2009. The mean HbA1c was 8.0% (64 mmol/mol) and the mean duration of diabetes was 8.3 years.

Conclusions: This randomized controlled study will test the hypothesis that strict multifactorial intervention therapy is effective for the prevention of CVDs in patients with type 2 diabetes who are at high CVD risk.

Trial registration number: NCT00300976.

Key messages

- We successfully set up a randomized control study to test the hypothesis that strict multifactorial intervention therapy is effective for the prevention of cardiovascular diseases in patients of type 2 diabetes mellitus at high risk.
- We recruited 2542 patients in 81 facilities in Japan and randomly allocated 1271 patients into the intensive therapy group.
- This study continues until the number of primary end point events, including death, myocardial infarction, and stroke, reaches 250.

INTRODUCTION

The epidemic of type 2 diabetes mellitus is a serious health issue worldwide. In Japan, 9.5 million people are estimated to have this disease (National Health Surveillance 2013) that is characterized by chronic hyperglycemia associated with insufficient insulin action that leads to disorders in glucose, lipid, and protein metabolism. When these metabolic disorders are chronic, they can manifest diabetic microvascular and macrovascular complications. Macrovascular lesions involving large vessels, such as the coronary artery, cerebral artery, or arteries of the lower extremities, account for myocardial infarction, cerebral infarction, and peripheral artery disease, whereas microvascular lesions account for visual impairment, renal failure, and neuropathy. Epidemiological studies, including the Hisayama study, demonstrate that diabetes is associated with a near threefold risk for the onset of macrovascular...
diseases such as myocardial infarction and stroke, and that this risk becomes greater when it is accompanied by hypertension and/or dyslipidemia.\footnote{1} Furthermore, a total of 16,000 patients are estimated to start receiving hemodialysis annually due to diabetic nephropathy, and a large number of patients develop ischemic heart disease or stroke, at an incidence of 17.0/1000 person-years in the Japan Diabetes Complications Study (JDCS).\footnote{2} No evidence has been obtained, however, that glycemic control will prevent cardiovascular diseases (CVDs) in patients with diabetes in the Japanese population, although the Kumamoto study showed that intensive insulin therapy reduced the risk of microvascular complications.\footnote{3}

Globally, a number of clinical studies evaluating various antidiabetic therapeutic strategies have been conducted to provide evidence that intensive therapy reduces microvascular and macrovascular complications. Of these, the UK Prospective Diabetes Study 33 (UKPDS 33), in which a total of 3867 patients with type 2 diabetes were randomly assigned to intensive therapy with sulfonylurea/insulin or to conventional diet therapy for glycemic control, came to a noteworthy conclusion that intensive therapy led to a decrease in the risk for the onset of microvascular complications among the treated patients, compared with diet therapy alone.\footnote{4} Moreover, in the UKPDS 35, in which the results of the UKPDS were further analyzed epidemiologically, it was shown that decreases in glycated hemoglobin (HbA1c) are paralleled with decreases in the risk for mortality, myocardial infarction, and microvascular complications.\footnote{5} Furthermore, the 10-year post-trial observational study of UKPDS revealed the existence of a ‘legacy effect’ that caused intensive blood glucose (BG) control immediately after disease onset to be associated with long-term beneficial effects on the prevention of coronary events and death by any cause.\footnote{6} For the patients with advanced type 2 diabetes, the PROactive (PROspective pioglitAzone Clinical Trial In macroVascular Events) study demonstrated that pioglitazone added to conventional therapy produced greater reductions in the onset of macrovascular complications than did placebo, indicating that intensive therapy with pioglitazone is efficacious for the secondary prevention of macrovascular complications.\footnote{7} However, recent trials challenging whether controlling hyperglycemia to near normal levels of HbA1c could reduce the risk of macrovascular complications, such as the ACCORD (Action to Control Cardiovascular Risk in Diabetes) trial,\footnote{8} the ADVANCE (Action in Diabetes and Vascular Disease: PreterAx and Diamicron Modified Release Controlled Evaluation) trial,\footnote{9} and the VADT (Veterans Affairs Diabetes Trial),\footnote{10} failed to show the beneficial effect of intensive BG control for patients with advanced stages of diabetes, presumably due to a marked increase in severe hypoglycemic episodes.

However, the Steno-2 study, in which patients with type 2 diabetes with microalbuminuria were randomly assigned to intensive therapy for rigorous BG, blood pressure (BP), and lipid control or to conventional therapy, reported a reduction in the incidence of microvascular and macrovascular complications in patients treated with multifactorial intensive therapy.\footnote{11} Moreover, the 5-year post-trial observational study of Steno-2 showed a significant reduction in macrovascular complications and mortality in the intensive therapy group (ITG),\footnote{12} suggesting that the comprehensive and strict control of BG, BP, and lipids brings with it long-term beneficial effects on the prevention of macrovascular complications and death, due to the possible ‘legacy effect’. Still, the study had limitations, including the small number of participants, only 160. In addition, glycemic control may not have been sufficient, because the mean HbA1c was nearly 8% (64 mmol/mol) and the achievement rate of the target HbA1c, <6.5% (48 mmol/mol), was around 15%, even in the ITG.

Effectiveness of multifactorial intervention was investigated also in the ADDITION-Europe (Anglo-Danish-Dutch Study of Intensive Treatment In People with Screen Detected Diabetes in Primary Care), in which over 3000 patients with newly diagnosed type 2 diabetes were recruited, whose mean baseline HbA1c was about 7% (53 mmol/mol), resulting in a slight but nonsignificant reduction in CVD events.\footnote{13}

Most recently, the EMPA-REG OUTCOME study showed that a sodium–glucose linked co-transporter 2 (SGLT2) inhibitor, empagliflozin, reduced cardiovascular mortality, with no difference in incidence of myocardial infarction or stroke.\footnote{14}

In 2005, the Ministry of Health, Labor and Welfare (MHLW) of Japan developed a new category of research projects, namely ‘strategic research’, whose target diseases were of the highest social priority and whose results were expected to be immediately applied to the clinical practice and the Japanese healthcare system. In the field of diabetes, three trials were planned; specifically, the Japan Diabetes Outcome Intervention Trial (J-DOIT),\footnote{15} including J-DOIT1, aimed at reducing the conversion from impaired glucose tolerance to diabetes through education and lifestyle modification;\footnote{16} J-DOIT2 aimed at reducing patient dropout rates from diabetes treatment through improved therapy from primary care physicians;\footnote{17} and J-DOIT3 aimed at reducing macrovascular complications through multifactorial interventions. Here, we describe the design of and rationale for J-DOIT3, renamed the Japan Diabetes Optimal Integrated Treatment study for three major risk factors of cardiovascular diseases, which started in 2006 and is, as of this writing, still underway.

\section*{RESEARCH DESIGN AND METHODS}

\subsection*{Study design}

The present trial is a multicenter, open-label, randomized, parallel-group study, conducted to examine the efficacy of intensive multifactorial therapy on the
development and exacerbation of diabetic complications, in particular CVDs, and mortality in patients with type 2 diabetes with high risk for CVDs, whose details are available online. In this trial, patients with type 2 diabetes who were at high risk of macrovascular complications were recruited, allocated to either the conventional therapy group (CTG) or the ITG, and followed up (figure 1).

Organization and funding
Research funding is to be accounted for by the MHLW grants in aid, as well as corporate donations, as described later, and to be supplied through the funding agency, which was shifted from the Japan Foundation for the Promotion of International Medical Research Co-operation (the National Center for Global Health and Medicine, Tokyo, Japan), or JF-PIMRC, to the Japan Diabetes Foundation (JDF) in April 2013 (see sFigure 1).

To monitor and assess the research, the foundation organized the Trial Coordinating Committee, the Trial Administrative Committee, the Trial Assessment Committee, the Trial Progress Management Committee, the Safety Assessment Committee, the Central Ethics Committee, and the Endpoint Assessment Committees, whose purposes are referred to online. Among them, the Endpoint Assessment Committees are blinded to the study arm, whereas the Trial Assessment Committee and the Safety Assessment Committee are not. The protocol of this study, as further mentioned later, was approved by the Central Ethics Committee.

Eligibility
Medical institutions were selected in Japan that employed certified diabetologist(s) who were expected to register 50 or more participants (25 or more participants per group) with type 2 diabetes and hypertension and/or dyslipidemia. The inclusion and exclusion criteria, shown in sTable 1 and 2, respectively, were formulated to recruit those patients who were at high risk of CVDs, but still allow for intensification of medication for BG, BP, and lipids.

Informed consent, registration, and random allocation
The physician in charge explained the study particulars in person to each candidate participant to obtain consent to participate in the study, and the written document of informed consent was obtained one or more days after the date of the physician’s explanation.

On receiving the patient’s registration, the Data Center was to confirm the eligibility of the participant, followed by dynamic allocation to the CTG or to the ITG in a 1:1 ratio through randomization adjusted by the presence or absence of CVD (myocardial infarction, stroke, coronary bypass surgery, percutaneous coronary angioplasty, cerebral revascularization, or cerebrovascular reconstruction), male/female ratio, age (≥60, <60 years old), and HbA1c (≥8.9% (74 mmol/mol), <8.9%), to ensure a balanced allocation of participant characteristics between the groups (figure 1).

After registration, each time the protocol is revised, informed consent is reobtained in all participants receiving investigational treatment. For participants who are

Figure 1 Screening, enrollment, and randomization of study participants (BMI, body mass index; CTG, conventional therapy group; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; IHD, ischemic heart disease; ITG, intensive therapy group; LDL-C, low-density lipoprotein cholesterol).
incompetent, consent from a family member or legally authorized representative is received instead.

Management goals and investigational treatment

The treatment goals were to be set in accordance with the ‘Treatment guide for diabetes’ edited by the Japan Diabetes Society18 in the CTG, and set stricter in the ITG (figure 1), with rationale as follows. The target HbA1c was the value of ‘excellently controlled’ in the Treatment Guide (2006), which was defined on the basis of the distribution of the HbA1c of the individuals with normal glucose tolerance. The target BP and low-density lipoprotein cholesterol were set by reference to clinical evidence available when this study was planned, including a meta-analysis on BP lowering by the PSC (Prospective Studies Collaboration),20 and results of the CARDS (Collaborative Atorvastatin Diabetes Study), an interventional trial of lipid lowering.21 To achieve these target goals, which have been kept unchanged throughout the course of the study, medications in the ITG are intensified in a stepwise manner in 3–6 months, mainly utilizing drugs proven to prevent CVDs (see sFigure 2).

In the ITG, for glycemic control, all participants maintain treatment after registration with predetermined diet and exercise therapy, and if they fail to achieve an HbA1c<6.2% (44 mmol/mol) in the first 3 months, the treatment is intensified with antidiabetic drugs categorized into 4 groups, mainly those that improve insulin resistance with less risk of hypoglycemia. Among insulin sensitizers, pioglitazone, the only thiazolidinedione derivative available in Japan, was preferred because it had emerging evidence of CVD prevention, such as the PROactive study,7 when this study was planned. It was also because only low-dose biguanides were allowed to be administered until 2010 in Japan. In the 6 months thereafter, the treatment is to be intensified if they fail to achieve an HbA1c<6.2% or ≥1% decrease in HbA1c (see sFigure 2). If any of the participants receiving treatment on an outpatient basis do not achieve the management goals, hospitalization will be recommended to ensure better glycemic control. All participants in the ITG are provided a BG meter for self-monitoring of BG (SMBG), and the physicians in charge remain informed of the measured results.

All participants maintain treatment for BP on registration with predetermined diet and exercise therapy, and if they fail to achieve BP<120/75 mm Hg in the first 3 months, they are given antihypertensive drugs, as shown in sFigure 2.

Interventions are intensified, focusing on self-monitoring in daily life, for stricter management goals in the ITG, to improve insulin resistance and reduce body weight. Moreover, the physician in charge remains informed of their measurements and reports on each visit.

The participants in both study groups are instructed on diet by using the “Food exchange lists—dietary guidance for persons with diabetes” edited by the Japan Diabetes Society.22 Those with diabetic nephropathy in both study groups are encouraged to restrict protein intake in accordance with the guideline.19

Observation and evaluation schedule

The frequency of hospital visits had been at least once a month, which was modified in January 2010 as follows: (1) at least once a month in those patients receiving insulin therapy and those patients with unstable glycemic control, and (2) a maximum of 3 months apart in those patients who have almost achieved management goals for glycemic control and other factors and whose conditions are stable (except those receiving insulin therapy). An outline of the observation/evaluation schedule for the study is shown in table 1.

Outcomes

The end points of the study are shown in table 2, and among them the primary end point and the secondary end point (1) are composite end points. The definitions are set forth, as shown in sTable 4, so that the End Point Assessment Committees could verify each event in an objective fashion.

During the course of the study, general investigations are performed on a regular basis to keep track of the incidence of CVD events as well as to see if the study is progressing as planned.

Even when an event defined as a primary or secondary end point occurred in a particular participant, the participant continues to be part of the study and is observed for occurrence of other events.
Sample size and study duration

The trial participants were estimated to include those with ischemic heart disease and those without at a ratio of 3.7, with the occurrence of events, including deaths per year, estimated at 4.4% (10% in those with a history of ischemic heart disease and 2% in those without) in the CTG.

To verify a 30% risk reduction in the ITG at the two-sided significance level of 5% with a 90% power, we estimated the required number of events to be 328, and the annual event rate was about half of the original estimate, probably due to advances in diabetes care in clinical practice. In January 2010, the primary end point was modified, from ‘the incidence of myocardial infarction, stroke, or death’, which was thereafter included in the secondary end points, to the present one shown in Table 2. Now the study duration is expected to be 9.75 years (until March 2016), yielding a mean intervention duration of approximately 8 years.

Safety

The physician in charge is to collect data on adverse events, including any of the following four symptoms by using active surveillance: hypoglycemia, edema, palpitation, and shortness of breath. Among them, occurrence of hypoglycemia is to be judged by the physician in charge by taking results of SMBG also into account. Severe hypoglycemia is defined as hypoglycemia requiring someone else’s assistance and/or admission.

Serious adverse events include severe hypoglycemia as well as those defined in the ethical guidelines, which are mentioned later.

The Safety Assessment Committee is to review all reported adverse events, and to make recommendations to the research leader with regard to the handling of the cases (including judgment as to whether the study is...
to be continued with the participants, instructions required to be given to the medical institutions of interest, or whether the trial protocol needs to be revised).

When the ACCORD study was discontinued in February 2008, the research leader temporarily suspended new registration and intensification of treatment in the ITG for 2 weeks until the Trial Assessment Committee performed interim analysis and confirmed that (1) CVD events had not been increased in the ITG, (2) occurrence of events had not been correlated with HbA1c, and (3) almost no occurrence of severe hypoglycemia had been seen in the ITG. The Safety Assessment Committee also confirmed that severe adverse events had not been increased in the ITG. Moreover, as was recommended by the committee, the occurrence of death is to be monitored on a real-time basis thereafter.

Discontinuance and dropout

The criteria for treatment discontinuance are the following: occurrence of a serious macrovascular or microvascular disease, occurrence of another serious complicating disease, diagnosis or strong suspicion of type 1 diabetes (including autoantibody positive), difficulties continuing treatment due to adverse events, patient request for discontinuance, patient death, or other cases in which the physician in charge judged continued treatment would be difficult.

Even when the investigational treatment is discontinued, with the participant’s consent (for participants who are incompetent, consent from the family member or legally authorized representative), the participant can be followed up on the presence or absence of the primary and secondary end points of the study.

Dropout cases in this study include (1) those who have discontinued investigational treatment without consent of follow-up, and (2) those with whom the study team have lost contact.

Ethical principles

The current trial is to be conducted in accordance with the Helsinki declarations, as well as the ‘Ethical Guidelines for the Conduct of Clinical Studies’ (The MHLW Bulletin, Vol. 459, 2004) and related notifications (Healthcare Administrative Bureau, the MHLW, order 1 228 001, December 28, 2004), which were integrated into the ‘Ethical Guidelines for Medical and Health Research Involving Human Subjects’ (the MHLW and the Ministry of Education, Culture, Sports, Science and Technology, December 22, 2014). All of the investigators and subinvestigators responsible for the trial must comply with the ethical standards stated earlier. The study was registered at ClinicalTrials.gov supported by the United States National Institutes of Health as NCT00300976.

Following approval by the Central Ethics Committee, the protocol of this study and its revisions are to be reviewed and approved by the ethics committee of each institution.

Table 3 Characteristics of the patients at baseline

<table>
<thead>
<tr>
<th></th>
<th>CTG (n=1271)</th>
<th>ITG (n=1271)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>59.1±6.3</td>
<td>58.9±6.4</td>
<td>0.462</td>
</tr>
<tr>
<td>Men/women</td>
<td>790/481</td>
<td>784/487</td>
<td>0.838</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>65.9±12.0</td>
<td>65.4±11.9</td>
<td>0.284</td>
</tr>
<tr>
<td>Body mass index</td>
<td>24.9±3.8</td>
<td>24.8±3.6</td>
<td>0.342</td>
</tr>
<tr>
<td>Cigarette smoking status (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>21.0</td>
<td>25.8</td>
<td>0.011</td>
</tr>
<tr>
<td>Former</td>
<td>32.7</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>46.3</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>Previous CVD event (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>10.8</td>
<td>11.2</td>
<td>0.800</td>
</tr>
<tr>
<td>Never</td>
<td>89.2</td>
<td>88.8</td>
<td></td>
</tr>
<tr>
<td>Duration of diabetes (year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>10.8</td>
<td>11.2</td>
<td>0.800</td>
</tr>
<tr>
<td>Never</td>
<td>89.2</td>
<td>88.8</td>
<td></td>
</tr>
<tr>
<td>HbA1c, % (mmol/mol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>8.0±1.1</td>
<td>8.0±1.1</td>
<td>0.442</td>
</tr>
<tr>
<td>Never</td>
<td>64.12</td>
<td>64.12</td>
<td></td>
</tr>
<tr>
<td>Fasting serum glucose, mg/dL (mmol/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>158.8±39.6</td>
<td>159.6±41.5</td>
<td>0.614</td>
</tr>
<tr>
<td>Never</td>
<td>8.81±2.20</td>
<td>8.86±2.30</td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mm Hg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>134.1±16.3</td>
<td>133.5±16.9</td>
<td>0.357</td>
</tr>
<tr>
<td>Never</td>
<td>134.1±16.3</td>
<td>133.5±16.9</td>
<td></td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>80.0±11.1</td>
<td>79.3±10.9</td>
<td>0.106</td>
</tr>
<tr>
<td>Never</td>
<td>80.0±11.1</td>
<td>79.3±10.9</td>
<td></td>
</tr>
<tr>
<td>LDL-C, mg/dL (mmol/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>125.7±31.8</td>
<td>125.5±30.6</td>
<td>0.908</td>
</tr>
<tr>
<td>Never</td>
<td>125.7±31.8</td>
<td>125.5±30.6</td>
<td></td>
</tr>
<tr>
<td>HDL-C, mg/dL (mmol/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>54.5±14.0</td>
<td>54.3±14.9</td>
<td>0.728</td>
</tr>
<tr>
<td>Never</td>
<td>54.5±14.0</td>
<td>54.3±14.9</td>
<td></td>
</tr>
<tr>
<td>Triglyceride, mg/dL (mmol/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>148.0±98.2</td>
<td>148.7±104.4</td>
<td>0.851</td>
</tr>
<tr>
<td>Never</td>
<td>148.0±98.2</td>
<td>148.7±104.4</td>
<td></td>
</tr>
</tbody>
</table>

Values of the data are expressed as mean ± standard deviation, and p Values were calculated with the use of a two-sample Student t test or the χ² test.

BP, blood pressure; CTG, conventional therapy group; CVD, cardiovascular disease; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; ITG, intensive therapy group; LDL-C, low-density lipoprotein cholesterol.
institution for their feasibility, as well as their ethical and scientific validity.

Data management

In accordance with the International Conference on Harmonization Guidelines for Good Clinical Practice, all the data are to be collected from the healthcare institutions by using the electronic data capture system managed by the Data Center and in conformity with the study aims only. Utmost care is to be paid in the handling of personal information, and the participants are to be informed beforehand what personal information is to be composed of and how it is to be used.

Statistical analyses

Descriptive statistics: The event-free survival period as well as the annual percentage of participants remaining event free is to be calculated by the Kaplan-Meier method, and 95% CIs are to be calculated using Greenwood’s formula. *Hypothesis testing:* A stratified log-rank test adjusting the stratification factors used for dynamic allocation (except for participating institutions) is to be used to verify the hypothesis that event-free survival is longer in the ITG than in the CTG. Effect size estimates: HR (ITG/CTG) for the event as well as 95% CIs is to be calculated by using the Cox proportional hazards model. The adjustment/stratification factors used for dynamic allocation (except for participating institutions) are to be incorporated into the regression analysis models. Furthermore, any background factors are also to be incorporated, if they are found to potentially affect the estimates.

After analyses of the primary end points, complementary analyses on the secondary end points are to be performed. As part of the safety evaluation, Fisher’s exact (probability) method is to be used to compare the percentages of occurrence of adverse events between the CTG and the ITG, and 95% CIs for the differences are to be detected. The analyses are to be based on the intention-to-treat principle. Details of the approach to be taken are to be described in the Statistical Analysis Plan.

History of modifications of the protocol

Modifications in the protocol have been approved by the Central Ethics Committee, including those on inclusion criteria, study duration, frequency of hospital visits, primary end point, funding agency, and the ethical guidelines, as stated earlier.

In addition, new drugs have been added to the available medications in the ITG when at least 1-year safety had been confirmed as a class in clinical practice after appearance on the market. In November 2008, ezetimibe was added to the available medication for dyslipidemia, and in January 2011 DPP-4 inhibitors and GLP-1 receptor agonists were added for hyperglycemia. In December 2012, omega-3 fatty acids were substituted for EPA as a medication for dyslipidemia. Most recently, SGLT2 inhibitors were included in antidiabetic medication in July 2015.

RESULTS

All over Japan, 81 healthcare facilities were selected, and the study was open for patient accrual between June 2006 and March 2009. Among the 178 007 patients with diabetes screened by the facilities, 14 695 were considered eligible, and 5687 received an explanation of the study by the physician in charge. Finally 2542 patients were enrolled, with 1271 allocated to the CTG and the other 1271 to the ITG, until the end of the accrual period, March 2009 (figure 1).

The baseline characteristics, as well as baseline medication, showed no significant change between the CTG and the ITG, except for cigarette smoking status, in which the percentage of current smokers was higher in the ITG (table 3 and sTable 5).

DISCUSSION

The J-DOIT3 Study Group successfully set up a randomized control study to test the hypothesis that multifactorial intervention therapy could be effective for prevention of CVDs in patients with type 2 diabetes in the Japanese population. We put importance on lifestyle modifications, as well as medications, to reduce hypoglycemia and weight gain.

Recently, the results of the EMPA-REG OUTCOME study were reported, but a further study is needed to determine the efficacy of SGLT2 inhibitors in CVD prevention. Moreover, the impact of SGLT2 inhibitors on this study is considered to be limited, because only a small number of patients will be exposed by the agents for a short period until the expected end of this study, since these became available quite recently and were included in the therapeutic regimen.

We recruited ≥2500 patients with comorbid hypertension and/or dyslipidemia with a mean HbA1c of 8% (64 mmol/mol), and with a mean duration of diabetes of over 8 years. J-DOIT3 is a quite unique study not just because it is the first large-scale trial for East Asian patients with type 2 diabetes who have many different characteristics from Caucasians, but because it also strives to achieve strict and safe control for all the risk factors of vascular complications. Thus, J-DOIT3 will provide novel therapeutic strategies to treat patients with type 2 diabetes for prevention of macrovascular and microvascular complications.

Author affiliations

1Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
2Department of Molecular Sciences on Diabetes, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
3Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
4Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan
Acknowledgements The authors express their heartfelt gratitude to patients, diabetologists, nurses, and healthcare professionals at the 81 participating institutes. They also show their sincere appreciation to the late Dr Toshitsugu Oda and Dr Takashi Wagasatsuma, serving president of the JF-PIMRC, the funding agency of this trial until April 2013, and Dr Yasuhiko Iwamoto, serving president of the JDF, the funding agency thereafter. The authors and the participating investigators of the J-DOIT3 Study Group declared duality of interest also to their healthcare institution.

Contributors KU designed the protocol, steered the study, researched the data, and wrote the manuscript. TS steered the study, researched the data, and wrote the manuscript. MK, YuO, SO, HK, MH, Aim, KO, KH, Aim, and KI steered the study and researched the data. YaO, designed the protocol and steered the study as a statistician. MN designed the protocol, steered the study, and researched the data. TK designed the protocol, steered the study, researched the data, and reviewed/editied the manuscript, as the guarantor of this work and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Collaborators The J-DOIT3 Study Group.

Funding The Ministry of Health, Labor and Welfare of Japan; Health and Labour Sciences Research Grants. This study was supported by Health and Labour Sciences Research Grants (H17-Tounyoubyou-tou-Sennyaku-801 (Strategic Outcomes Research Program for Research on Diabetes and Comprehensive Research on Diabetes/Cardiovascular and Life-Style Related Diseases), H22-Junkanki-tou(Seishuu)-Shitei-018, and H25-Junkanki-tou(Seishuu)-Shitei-020), by the MHLW. It was also supported by corporate donations from Asahi Kasei Pharma Corporation, Astellas Pharma Inc, AstraZeneca K. K., Bayer Yakuhin, Ltd, Bristol-Myers Squibb K. K., Daiichi Sankyo Co, Ltd, Eli Lilly Japan K. K., Kissei Pharmaceutical Co, Ltd, Kowa Pharmaceutical Co, Ltd, Mitsubishi Tanabe Pharma Corporation, MSD K. K., Nippon Boehringer Ingelheim Co, Ltd, Novartis Pharma K. K., Novo Nordisk Pharma Ltd, Ono Pharmaceutical Co, Ltd, Pfizer Japan Inc, Shionogi & Co, Ltd, Sumitomo Dainippon Pharma Co, Ltd, and Takeda Pharmaceutical Co, Ltd. Materials for SMBG were provided without any charge from Sanwa Kagaku Kenkyusho Co, Ltd.

Competing interests KU reports a funded research department from MSD, Nippon Boehringer Ingelheim, Novartis, and Novo Nordisk; lecture fees from Astellas, Chugai Pharmaceutical Co, Ltd, and Kowa; being the chairman of the board of directors, and owning stock in Statcom Co, Ltd. MN reports lecture fees from AbbVie K. G., Astellas, Daiichi Sankyo, Eli Lilly, Kissei, Kowa, Kyowa Hakko Kirin, Meiji Seika Pharma Co, Ltd, Mitsubishi Tanabe, MSD, Novo Nordisk, Sanofi, Ono, Taisho Toyama, and Takeda; grants and endowments from AstraZeneca, Daiichi Sankyo, Kowa, Kyowa Hakko Kirin, Mitsubishi Tanabe, Mochida Pharmaceutical Co, Ltd, Sanwa Kagaku, and Takeda. TK reports funded research departments from MSD, Nippon Boehringer Ingelheim, Novartis, and Novo Nordisk; lecture fees from Astellas, AstraZeneca, Eli Lilly, Kissei, Kowa, Mitsubishi Tanabe, MSD, Nippon Boehringer Ingelheim, Novo Nordisk, Ono, Sumitomo Dainippon, and Takeda; manuscript fees from Eli Lilly; grants and endowments from Daiichi Sankyo, Mitsubishi Tanabe, Sumitomo Dainippon, and Takeda; funds for contracted research from Daiichi Sankyo, Sanwa Kagaku, and Takeda; and funds for collaborative research from Daiichi Sankyo and Novartis.

Patient consent Obtained.

Ethics approval The Central Ethics Committee.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

Correction

The contributors statement has been updated to read: YaO designed the protocol and steered the study as a biostatistician.

The competing interests statement has been updated to read: YuO reports lecture fees from Nippon Boehringer Ingelheim, and Takeda. YaO reports lecture fees from Eli Lilly, Novo Nordisk, Sanofi, and Takeda; consulting fees from Astellas, Chugai Pharmaceutical Co, Ltd, and Kowa; being the chairman of the board of directors, and owning stock in Statcom Co, Ltd. MN reports lecture fees from AbbVie G. K., Astellas, Daiichi Sankyo, Eli Lilly, Kissei, Kowa, Kyowa Hakko Kirin, Meiji Seika Pharma Co, Ltd, Mitsubishi Tanabe, MSD, Novo Nordisk, Sanofi, Ono, Taisho Toyama, and Takeda; grants and endowments from AstraZeneca, Daiichi Sankyo, Kowa, Kyowa Hakko Kirin, Mitsubishi Tanabe, Mochida Pharmaceutical Co, Ltd, Sanwa Kagaku, and Takeda.

Affiliation number 14 has also been added for Mitsuhiko Noda. Affiliation 14: Department of Endocrinology and Diabetes, Saitama Medical University, Saitama, Japan.

BMJ Open Diabetes Research and Care 2016;4:e000123. doi:10.1136/bmjdr-2015-000123corr1
Table 1

Inclusion criteria

Subjects were considered eligible for inclusion if they were 45 years old or older but younger than 70 years old at study entry, had type 2 diabetes and met both “(1) and (2)” or both “(1) and (3)” described below.

(1) Glycemic control: those with HbA1c 6.9% (52 mmol/mol) or greater despite treatment with any of the 3 regimens given below:
 a) diet and exercise therapy alone
 b) diet and exercise therapy plus 1 oral anti-diabetic drug,
 c) diet and exercise therapy plus alpha-GI and another oral anti-diabetic drug

(2) Blood pressure control: those with the following casual BP level as measured on an outpatient basis:
 a) systolic BP ≥140 mm Hg or diastolic BP ≥90 mm Hg while not taking an antihypertensive drug
 b) systolic BP ≥130 mm Hg or diastolic BP ≥80 mmHg while taking 1 or 2 ARB, ACEI, or long-acting CCB
 Those receiving antihypertensive drugs other than these 3 drugs were not eligible for study entry, with the exception of those who were receiving these drugs for purposes other than blood pressure lowering

(3) Lipid control: those with the following fasting lipid levels not taking a lipid-lowering drug or taking a lipid-lowering drug:
 a) LDL-cholesterol ≥120 mg/dL (as estimated by using the Friedewald formula)
 b) triglycerides ≥150 mg/dL
 c) HDL-cholesterol <40 mg/dL
Table 2

Exclusion criteria

(1)	those with poorly controlled hypertension despite pharmacological therapy (systolic BP ≥200 mm Hg or diastolic BP ≥120 mm Hg)
(2)	those receiving insulin therapy
(3)	those with non-diabetic renal disease
(4)	those in whom type 1 diabetes, due to pathogenic mechanisms other than those associated with type 2 diabetes, is strongly suspected
(5)	those who tested anti-GAD antibody-positive
(6)	those with LDL-cholesterol ≥200 mg/dL
(7)	those suspected of having secondary hypertension other than renal parenchymal hypertension
(8)	those suspected of having hereditary lipid disorder with a strong family history of lipid metabolic disorder
(9)	those who were receiving antihypertensive drugs other than ARB, ACEI, or long-acting CCB, except where they were receiving these drugs for purposes other than blood pressure lowering
(10)	those who were receiving 3 or more antihypertensive drugs (i.e., ARB, ACEI, and long-acting CCB), except where they were receiving these drugs for purposes other than blood pressure lowering
(11)	those with more serious retinopathy than proliferative retinopathy
(12)	renal failure (serum Cr: ≥2.0 mg/dL in men; ≥1.5 mg/dL in women)
(13)	those with a history of cardiac failure or those with cardiac failure
(14)	those who were pregnant or potentially pregnant
(15)	those who met any of the following criteria and who had BNP ≥100 pg/mL, myocardial infarction, angina pectoris (or a history of disease), history of coronary artery bypass graft (CABG), history of percutaneous coronary angioplasty (PTCA), other cardiac disease, ECG findings of left ventricular hyperplasia, or abnormal ECG findings (excluding isolated extrasystole or right bundle branch block [RBBB])
(16)	those judged by the physician in charge to be ineligible for study entry
Table 3 Management goals and interventions for lifestyle modification	
---------------------------------	-----------------
Weight control	**CTG** Target BMI, ≤24 Provided with diaries to record their body weight **ITG** Target BMI, ≤22 Provided with diaries to record their body weight
Diet therapy	**Total energy intake** 25-35 kcal/kg according to daily activity; salt intake, ≤6 g/day with comorbid hypertension, ≤9 g/day in male without hypertension, ≤7.5 g/day in female without hypertension (in accordance with the guideline 19) **Total energy intake**, ≤25 kcal/kg in those with BMI ≥25, ≤27 kcal/kg in those with BMI <25 **Lipid intake**, ≤25% of total energy intake **Cholesterol intake**, ≤300 mg/day **Salt intake**, ≤6 g/day **Between-meal and bedtime snacks, prohibited** **Alcohol (equivalent to 180 mL of sake or less)** abstinence to be rigorously adhered to, and obliged to report on alcohol intake **Thirty-minute or longer guidance on nutrition by designated national registered dietitians at the start of the study, 1, 3, 6, and 12 months after the start of the study, and every 6 months in the 2nd year afterwards**
Exercise therapy	**Two or more 15- to 30-minute walks on a daily basis** (in accordance with the guideline 19) **Provided with an accelerometer** **Two or more 15- to 30-minute walks on a daily basis** Provided with an accelerometer, and should report on the calories consumed as well as the number of steps taken every day
Smoking cessation	Instructed to persevere in their smoking cessation practice and to report at their regular hospital visits on the number of cigarettes smoked **Provided with smoking-cessation aids, if necessary**
Education	A core program and a post-core program intended to improve lifestyle habits are to be implemented to ensure lifestyle factors are improved
Table 4
Definitions of the events

Myocardial infarction:
the presence of typical symptoms (e.g., lasting severe chest pain), echocardiographic changes, abnormal laboratory findings (e.g., elevation of the cardiac enzyme troponin T), or findings of clinical imaging (e.g., coronary angiography, cardiac scintigraphy, multidetector row computed tomography) which were diagnosed as such by a physician.

Stroke:
the presence of a newly onset focal symptom lasting more than 24 hours which was diagnosed as such by a physician (preferably with the culprit lesion identified/confirmed on CT or MRI/MRA).

Occurrence of onset or progression of nephropathy:
an event when either of the following occurs:

a. progression from normoalbuminuria (urinary albumin <30 mg/g•Cr) to microalbuminuria (urinary albumin ≥30 mg/g•Cr, <300 mg/g•Cr), or from normoalbuminuria to macroalbuminuria (urinary albumin ≥300 mg/g•Cr)
b. progression from microalbuminuria to macroalbuminuria
c. serum creatinine levels elevated 2-fold or more compared to that at study entry
d. endstage renal failure (permanent dialysis initiated or renal transplant performed)

If a. or b. occurs in a particular subject and the measured urinary albumin value is shown to be 30% higher than that at study entry, the subject is to be re-examined (with a morning urine sample), and if the measured value is 30% higher than that at study entry, this is to be construed as the occurrence of an event.

In the event of c., the subject is also to be re-examined within 3 months of the event.

In a., b., or c., the event is to be evaluated in the first occurrence.

Occurrence of onset or progression of retinopathy
an event when either of the following occurs:

a. progression from absence of retinopathy to nonproliferative retinopathy or proliferative retinopathy
b. progression from nonproliferative to proliferative retinopathy

c. loss of vision likely due to retinopathy
<table>
<thead>
<tr>
<th></th>
<th>CTG (n = 1271)</th>
<th>ITG (n = 1271)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of any antidiabetic (%)</td>
<td>77.2</td>
<td>74.6</td>
<td>0.138</td>
</tr>
<tr>
<td>SU</td>
<td>40.7</td>
<td>40.1</td>
<td>0.808</td>
</tr>
<tr>
<td>Glinides</td>
<td>8.1</td>
<td>7.6</td>
<td>0.658</td>
</tr>
<tr>
<td>BG</td>
<td>14.8</td>
<td>14.2</td>
<td>0.736</td>
</tr>
<tr>
<td>Pioglitazone</td>
<td>6.7</td>
<td>6.5</td>
<td>0.936</td>
</tr>
<tr>
<td>α-GI</td>
<td>28.2</td>
<td>29.0</td>
<td>0.693</td>
</tr>
<tr>
<td>Use of any antihypertensive (%)</td>
<td>40.6</td>
<td>41.7</td>
<td>0.600</td>
</tr>
<tr>
<td>ARB</td>
<td>28.1</td>
<td>28.4</td>
<td>0.895</td>
</tr>
<tr>
<td>ACEI</td>
<td>4.3</td>
<td>5.1</td>
<td>0.400</td>
</tr>
<tr>
<td>Long-acting CCB</td>
<td>23.5</td>
<td>22.4</td>
<td>0.540</td>
</tr>
<tr>
<td>Use of any antilipemic (%)</td>
<td>34.2</td>
<td>32.0</td>
<td>0.255</td>
</tr>
<tr>
<td>Atorvastatin, pitavastatin, or rosvastatin</td>
<td>18.8</td>
<td>17.9</td>
<td>0.609</td>
</tr>
<tr>
<td>Other statins</td>
<td>11.3</td>
<td>9.9</td>
<td>0.274</td>
</tr>
<tr>
<td>Anion-exchange resin</td>
<td>0.0</td>
<td>0.2</td>
<td>0.500</td>
</tr>
<tr>
<td>EPA</td>
<td>1.0</td>
<td>1.3</td>
<td>0.710</td>
</tr>
<tr>
<td>Fibrates</td>
<td>2.8</td>
<td>2.4</td>
<td>0.616</td>
</tr>
</tbody>
</table>

* p values were calculated with the use of Fisher’s exact test.
Figure 1
Funding for J-DOIT3

<table>
<thead>
<tr>
<th>Status</th>
<th>June 2006</th>
<th>March 2009</th>
<th>March 2016 (expected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accrual period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding agency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JF-PIMRC</td>
<td></td>
<td>April 2013</td>
<td>JDF</td>
</tr>
<tr>
<td>Funding by the MHLW</td>
<td></td>
<td>April 2010</td>
<td></td>
</tr>
<tr>
<td>Strategic Outcomes Research Program for Research on Diabetes and Comprehensive Research on Diabetes/Cardiovascular and Life-Style Related Diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporate donations</td>
<td></td>
<td></td>
<td>Health and Labour Sciences Research Grant</td>
</tr>
</tbody>
</table>
Multifactorial step-wise treatment in the ITG

Blood Glucose

If the goal is not achieved within 6 months, the treatment is intensified to the next step.

- **Step 0**
 - Diet/exercise therapy
 - Category A, if BMI ≥25
 - Category A or B, if BMI 22 to <25
 - Category B or A, if BMI <22

- **Step 1**
 - (mono-category therapy)
 - Category A + category B (+ category D)

- **Step 2**
 - (combined therapy)
 - Category A + category B (+ category D)

- **Step 3**
 - (insulin therapy)

Category A: pioglitazone, BG, GLP-1 receptor agonists

Category B: SU and glinides

Category C: Insulin

Category D: αGI, DPP-4 inhibitors, SGLT2 inhibitors

Pioglitazone is to be chosen whenever possible

Blood Pressure

If the goal is not achieved within 3-6 months, the treatment is intensified to the next step.

- **Step 1**
 - Add a long-acting CCB

- **Step 2**
 - Add on a diuretic, β blocker, and α blocker

Lipid

If the goal is not achieved within 3 months, the treatment is intensified to the next step.

- **Step 1**
 - Maximal dose of the agents used in step 1
 - A standard dose of atorvastatin, pitavastatin, or rosuvastatin

- **Step 2**
 - Add an anion-exchange resin and/or ezetimibe

The omega-3 fatty acids are to be given if the goal for TG has not been achieved.
List of participating investigators

The J-DOIT3 Study Group are:

Asahikawa Medical University, Asahikawa, Hokkaido: Masakazu Haneda. Yoshida Hospital, Asahikawa, Hokkaido: Yasunori Iwashima. Hirosaki University Hospital, Hirosaki, Aomori: Toshihiro Suda, Naoki Tamasawa, and Makoto Daimon. Iwate Medical University Hospital, Morioka, Iwate: Jo Satoh, and Yasushi Ishigaki. Fukushima Medical University, Fukushima, Fukushima: Tsuyoshi Watanabe. Dokkyo Medical University Hospital, Mibu, Tochigi: Kikuo Kasai, and Yoshimasa Aso. Jichi Medical University, Shimotsuke, Tochigi: Shun Ishibashi. Saitama Medical University Hospital, Moroyama, Saitama: Shigehiro Katayama. Jichi Medical University Saitama Medical Center, Saitama, Saitama: San-e Ishikawa, and Masafumi Kakei. Saitama Red Cross Hospital, Saitama, Saitama: Kazuyuki Namai. Asahi General Hospital, Asahi, Chiba: Naotake Hashimoto, Yoshifumi Suzuki, and Shunichiro Onishi. Chiba University Medical School, Chiba, Chiba: Koutaro Yokote. Kameda Medical Center, Kamogawa, Chiba: Masafumi Matsuda, and Masahiro Masuzawa. Nihon University Itabashi Hospital, Itabashi, Tokyo: Yoichi Hayashi, Satoshi Saito, Norikazu Ogihara, and Hisamitsu Ishihara. The Jikei University School of Medicine, Minato, Tokyo: Naoko Tajima, and Kazunori Utsunomiya. Keio University School of Medicine, Shinjuku, Tokyo: Akira Shimada, and Hiroshi Itoh. Juntendo University
Graduate School of Medicine, Bunkyo, Tokyo: Ryuzo Kawamori, and Hirotaka Watada.

NTT Medical Center Tokyo, Shinagawa, Tokyo: Michio Hayashi. Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, Minato, Tokyo: Yasumichi Mori. Mitsui Memorial Hospital, Chiyoda, Tokyo: Teruo Shiba, and Akihiro Isogawa. Tokyo Women’s Medical University Hospital, Shinjuku, Tokyo: Hiroshi Sakura.

Tokyo Medical University Hospital, Shinjuku, Tokyo: Masato Odawara. The University of Tokyo Hospital, Bunkyo, Tokyo: Kazuyuki Tobe, Kazuhisa Tsukamoto, and Toshimasa Yamauchi. Teikyo University School of Medicine Hospital, Itabashi, Tokyo: Tamio Teramoto. Tokyo Medical and Dental University, University Hospital of Medicine, Bunkyo, Tokyo: Yukio Hirata, Isao Uchimura, and Yoshihiro Ogawa. Toho University Medical Center, Ohmori Hospital, Ota, Tokyo: Gen Yoshino, and Takahisa Hirose. National Center for Global Health and Medicine Hospital, Shinjuku, Tokyo: Hiroshi Kajio. Saiseikai Central Hospital, Minato, Tokyo: Yoshihito Atsumi, and Akira Shimada. Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo: Atsushi Araki. Hachioji Medical Center of Tokyo Medical University, Hachioji, Tokyo: Akio Ueki, and Atsushi Ohno. Showa General Hospital, Kodaira, Tokyo: Masafumi Kitaoka. Kitasato University Hospital, Sagamihara, Kanagawa: Yoshikuni Fujita, Tatsumi Moriya, Taiki Tojo, and Masayoshi Shichiri. Tokai University
School of Medicine, Isehara, Kanagawa: Daisuke Suzuki, and Masao Toyoda. Shonan
Kamakura General Hospital, Kamakura, Kanagawa: Kumiko Hamano, and Rieko Komi.
Yokohama City University Hospital, Yokohama, Kanagawa: Yasuo Terauchi. Yokohama
Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations,
Yokohama, Kanagawa: Nobuaki Kuzuya, and Masayo Yamada. Kanazawa University
Hospital, Kanazawa, Kanazawa: Toshinari Takamura. Yaizu City Hospital, Yaizu, Shizuoka:
Mitsuo Imura. Chukyo Hospital, Nagoya, Aichi: Hiroshi Tanaka, and Masayuki Hayashi.
Nagoya Medical Center, Nagoya, Aichi: Yasuhisa Kato. Fujita Health University Hospital,
Toyoake, Aichi: Mitsuyasu Itoh, and Atsushi Suzuki. Chubu Rosai Hospital, Nagoya, Aichi:
Nigishi Hotta, Jun Yosida, and Eitaro Nakashima. Mie University Hospital, Tsu, Mie:
Yasuhiro Sumida, and Yutaka Yano. National Hospital Organization Mie Chuou Medical
Center, Tsu, Mie: Tsuyoshi Tanaka. Ise Red Cross Hospital, Ise, Mie: Kazuya Murata. Shiga
University of Medical Science, Otsu, Shiga: Atsunori Kashiwagi, and Hiroshi Maegawa.
National Hospital Organization Kyoto Medical Center, Kyoto, Kyoto: Shigeo Kono. Kyoto
University Hospital, Kyoto, Kyoto: Nobuya Inagaki. Osaka Police Hospital, Osaka, Osaka:
Keisuke Kosugi. National Cerebral and Cardiovascular Center, Suita, Osaka: Yasunao
Yoshimasa, and Ichiro Kishimoto. Osaka City General Hospital, Osaka, Osaka: Toshihiko