
6 BMJ Open Diab Res Care 2020;8:e000816. doi:10.1136/bmjdrc-2019-000816

Emerging Technologies, Pharmacology and Therapeutics

For the first 90 min during NMP in the porcine kidney 
study, metformin perfusion fluid concentration remained 
stable with a maximum of 5.1±1.2 mg/L (figure 1C). After 
that, metformin perfusion fluid concentration increased 
rapidly until a concentration of 179.3±38.8 mg/L was 
reached at the end of the experiment. No significant 
differences were found when comparing metformin 
concentrations measured in whole blood and plasma 
(online supplementary figure 2).

Metformin clearance
Metformin clearance during the last 30 min of NMP in 
rat kidneys only pretreated with metformin was 2.7±0.4 
times higher than creatinine clearance (figure  2A–C). 
Compared with rats that were pretreated with metformin 
and whose kidneys subsequently were perfused without 
the addition of metformin, metformin excretion in 
kidneys perfused with 30 mg/L metformin was decreased, 
irrespective of metformin pretreatment. Metformin 
clearance and the metformin-to-creatinine clearance 

ratio was even further decreased in kidneys perfused 
with 300 mg/L metformin, as compared with metformin 
pretreated rats that were subsequently perfused without 
addition of metformin, and when compared with kidneys 
perfused with 30 mg/L metformin when both pretreat-
ment groups were combined (figure  2A–C). Of note, 
creatinine clearance did not differ during the last 30 min 
of NMP in the rat study (figure  2B). Non-linear curve 
fitting of the relation of metformin perfusate concen-
tration with urinary elimination rate was uninformative 
because of its experimental design (online supplemen-
tary figure 1b).

During NMP of porcine kidneys, overall metformin 
clearance was higher than the creatinine clearance 
(Pinteraction<0.01, figure 2D). The metformin-to-creatinine 
clearance ratio peaked at 5.7±1.2 after 30 min of NMP 
and declined subsequently (linear regression equa-
tion=−0.014×min+5.4, R2=0.78, p<0.01; figure  2E). 
For the first 90 min, both metformin clearance and 

Figure 2  (A) Metformin clearance during the last 30 min of normothermic machine perfusion (NMP) of rat kidneys. Only 
three urine samples per pretreatment group in the 300 mg/L metformin group were available for determination of metformin 
concentration. *P<0.05. (B) Creatinine clearance during the last 30 min of NMP of rat kidneys. (C) Metformin-to-creatinine 
clearance ratio shown on a logarithmically transformed scale during the last 30 min of NMP of rat kidneys. Because only 
three urine samples per pretreatment group in the 300 mg/L metformin groups were available for the determination of the 
metformin concentration, both pretreatment groups were combined for statistical analysis. *P<0.05. **P<0.05 when combining 
pretreatment groups. (D) Metformin and creatinine clearance during NMP of metformin-treated porcine kidneys. (E) Metformin-
to-creatinine clearance ratio of metformin-treated porcine kidneys displayed on a logarithmically transformed scale. Shown is 
a linear regression trend line with a 95% CI (dashed lines with the gray area in between). (F) Relation of metformin perfusate 
concentration with urinary elimination rate of metformin in the porcine kidney study. Displayed in red is a fit with 95% CI 
(dashed lines with the area in between) obtained from a Michaelis-Menten model. (G) Tissue metformin concentration in non-
perfused rat kidneys, and after NMP in both the rat kidney study and porcine kidney study. *p<0.05. ***P<0.05 vs controls. 
†P<0.05 vs controls and kidneys perfused with 30 mg/L metformin irrespective of pretreatment. Except for panel F, data are 
expressed as mean±SEM.
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creatinine clearance increased over time (figure  2D). 
Metformin clearance decreased until the end of NMP 
with 48.9±19.7 mL/min/100 g (paired Student’s t-test, 
p=0.01), while creatinine clearance remained relatively 
stable (declining in total 5.0±19.7 mL/min/100 g, paired 
Student’s t-test, p=0.80). Non-linear curve fitting of the 
cross-sectional relation of metformin plasma concentra-
tion with the elimination rate using a Michaelis-Menten 
model showed substantial variation of the data (figure 2F, 
R2=0.49), but suggests saturation with a Km of 23.0 (95% 
CI 10.0 to 52.3) mg/L.

Metformin tissue level
Metformin level was measured in homogenized cortical 
kidney tissue of the contralateral kidney after nephrec-
tomy, and of experimental kidneys at the end of NMP 
in both experiments (figure 2G). The metformin tissue 
levels in non-perfused kidneys of rats that received 
metformin pretreatment were higher than the tissue 
levels found after saline pretreatment (25.4±4.7 vs 0.9±0.7 
mg/kg, p<0.01). Compared with controls receiving no 
metformin at all, metformin tissue concentration was 
increased in rats that received metformin pretreatment 
but whose kidneys were not perfused with metformin 
(3.0±0.8 vs 16.7±5.1 mg/kg, p=0.04). Metformin tissue 
level was higher in 30 mg/L perfused kidneys than 
kidneys perfused without metformin and was elevated 
even more in kidneys perfused with 300 mg/L (ANOVA, 
p<0.01). Pretreatment with metformin or saline did not 
affect metformin tissue level in the 30 mg/L (p=0.50) 
or 300 mg/L group (p=0.64). Porcine tissue metformin 
level did not differ with the 300 mg/L group in the rat 
study (p=0.93).

Tubular function and renal metabolism
Fractional sodium excretion was calculated as an indicator 
for tubular function, and a lower percentage of sodium 
being excreted corresponds with improved tubular func-
tion. A significant interaction between treatment group 
and time was found for fractional sodium excretion in the 
rat study (Pinteraction=0.04, online supplementary figure 3a). 
At 60 and 90 min of NMP, rats pretreated with metformin 
whose kidneys were subsequently perfused without the 
addition of metformin had a significantly lower fractional 
sodium excretion compared with all other treatment 
groups (online supplementary figure 3, figure  3A). In 
the porcine kidney study, fractional sodium excretion was 
not different between treatment groups (Pinteraction=0.84, 
figure 3B).

No interaction of treatment group with time was 
found for oxygen consumption in the rat study (Pinterac-

tion=0.29; online supplementary figure 3b). However, the 
total amount of oxygen consumed during the experi-
ment was significantly lower in kidneys perfused with 
300 mg/L metformin, irrespective of pretreatment, 
than controls (578±28 (controls) vs 427±18 (saline 
pretreatment, 300 mg/L metformin perfusion) vs 
405±13 (metformin pretreatment, 300 mg/L metformin 

perfusion) mLO2/100 g, p<0.01 vs controls; figure 3C). 
Oxygen consumption during NMP of porcine kidneys 
was not affected by metformin therapy (Pinteraction=0.11; 
figure 3D). Also, total oxygen consumption did not differ 
between metformin-treated porcine kidneys and controls 
(296±40 vs 382±33 mLO2/100 g, p=0.13).

The baseline lactate level was negligible in all rat kidney 
treatment groups (data not shown). Compared with all 
other treatment groups, lactate production nearly tripled 
in kidneys perfused with 300 mg/L metformin, irrespec-
tive of metformin pretreatment (figure 3E). Coupled to 
lactate production, perfusion with 300 mg/L metformin 
led to increased glucose consumption compared with 
all other experimental groups (online supplementary 
figure 4). No difference in ATP content was observed 
between the metformin and control group in the porcine 
kidney study (2.2±0.8 vs 4.9±1.5 µmol/g protein, p=0.14; 
figure 3F). Both at the start and the end of NMP of rat 
kidneys, the pH in the perfusion fluid of kidneys perfused 
with 30 mg/L metformin approximated physiological 
levels, while it was decreased in otherwise treated kidneys 
(online supplementary figure 5a, b). The pH decreased 
in metformin-treated porcine kidneys, while it remained 
relatively stable in controls, but no statistically significant 
differences were found between the treatment groups 
(Pinteraction=0.26, online supplementary figure 5c).

Gene expression of transporters
Expression of genes encoding for transporters involved 
in the transport of metformin was determined in both 
studies at the end of NMP. Gene expression of OCT-2, 
transporting metformin into the proximal tubule cell, 
in rats pretreated with metformin whose kidneys subse-
quently were perfused with 30 mg/L metformin was lower 
than gene expression in metformin pretreated rats whose 
kidneys were perfused without metformin or with 300 
mg/L metformin, respectively (figure 4A). Expression of 
OCT-1 and OCT-3 was not different between treatment 
groups. Gene expression MATE-1, encoding for a trans-
porter involved in the apical efflux of metformin, was 
not different between treatment groups in the rat study 
(figure  4B). In the porcine kidney study, gene expres-
sion of OCT-1, OCT-2 and MATE-2K was unaffected by 
metformin treatment (figure 4C).

DISCUSSION
In this study using two different ex vivo perfusion 
models, we found that secretion accounts for a substan-
tial proportion of the total elimination of metformin. 
Metformin excretion was hampered at higher circulating 
concentrations of metformin. In contrast to our hypoth-
esis, this can mainly be explained by the saturation of 
OCTs rather than a self-inhibitory effect. Interestingly, 
rats pretreated with oral metformin whose kidneys were 
perfused without the addition of metformin had the 
highest metformin excretion, and the highest sodium 
reabsorption rate (figures  2A and 3A). Although this 
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group did not have improved fractional sodium excretion 
compared with controls, metformin pretreatment might 
improve tubular function.23–25 Remarkably, renal func-
tion and metabolism of these ex vivo perfused kidneys 
seems to be relatively resistant to metformin concentra-
tions considered highly toxic in vivo.

Both in vivo and in vitro studies have reported that 
mitochondrial respiration and tissue oxygen consump-
tion is decreased when exposed to metformin.26–29 Such 
an effect is also seen in patients treated for metformin 
intoxication.30 In our study, oxygen consumption 
decreased in rat kidneys perfused with 300 mg/L 

metformin. Possibly, the relatively short period in which 
the kidneys were exposed to metformin might explain 
the discrepancy with previous studies assessing oxygen 
consumption. On the other hand, acute administration 
of metformin to rats was also reported not to be associ-
ated with altered oxygen demand in general and, specif-
ically, within tubules.31 Lactate production was increased 
in rat kidneys perfused with 300 mg/L metformin, indi-
cating increased anaerobic metabolism. Because lactate 
production was only affected when exposed to such a 
high metformin concentration, other tissues than the 
kidney may have a considerable role in development of 

Figure 3  (A) Fractional sodium excretion, an indicator for tubular function, during the last 30 min of normothermic machine 
perfusion (NMP) in rat kidneys and (B) during NMP of porcine kidneys. Lower fractional sodium excretion corresponds with 
improved tubular function. (C) Total oxygen consumption of rat kidneys by calculating the area under the curve of oxygen 
consumption at different time points, and (D) oxygen consumption during NMP of porcine kidneys. (E) Lactate production 
of rat kidneys during NMP. (F) ATP content measured in cortical renal tissue at the end of NMP in porcine kidneys. Data 
are expressed as mean±SEM in all panels. *P<0.05. **P<0.05 vs controls (ie, saline pretreated rats whose kidneys were not 
perfused with metformin).
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metformin-induced lactic acidosis as this already occurs 
under lower metformin concentrations. Indeed, our 
group reported previously that oral administration of 
metformin alone caused a threefold increase in lactate 
production during isolated liver perfusion without addi-
tion of metformin as postconditioning agent, which is in 
line with other studies investigating the inhibitory role 
of metformin on hepatic gluconeogenesis.32–34 Beside 
inhibition of lactate metabolism, lactate production 
by porcine skeletal muscle was increased when a high 
concentration of metformin was administered locally.35 
Likewise, metformin dose-dependently caused lactate 
overproduction in human platelets.36

Beside the potential effect of metformin on its own 
elimination, OCTs are saturable at high concentra-
tions as used in our study. Previously, it was reported 
that the apparent Km ranges from 36.8 to 409.4 mg/L 
for OCT-2, from 29.3 to 100.7 mg/L for MATE-1 and 
from 135.6 to 255.7 mg/L for MATE-2K, respectively.37 
Inhibition of MATE transporters seems to have a more 
important role in metformin transport and accumula-
tion than transporters involved in influx of metformin, 
such as OCT-2.38–40 Although we assessed elimination of 
metformin within the whole kidney rather than a cell 
line expressing a single transporter, we found a Km of 23 
mg/L which is in line with previous reports. Moreover, 
the metformin tissue level of rats whose kidneys were 
perfused with 300 mg/L metformin was approximately 

a 5-fold higher than kidneys perfused with 30 mg/L 
metformin, while a 10-fold increase in tissue level could 
be expected. Assuming that metformin tissue binding 
is low and hence unbound concentrations in tissue 
should be similar to the total concentration, saturation 
of the transporters could be a likely explanation of our 
observations.

Another explanation of our findings might be that 
metformin, being a hydrophilic base, affects the hydro-
gen-ion gradient within proximal tubules. The pH in 
the perfusion fluid during NMP of porcine kidneys 
decreased over time, which is of particular interest as 
the transport function of metformin transporters are 
compromised under acidic circumstances.7 However, 
it has been previously reported that transport by OCTs 
is only affected when the pH was below 6.9.41 Studies 
competitively inhibiting different renal transporters 
report that metformin secretion can be affected by 
several compounds.2 7 However, metformin has often 
been investigated as a substrate and, as far as we know, 
it has not been reported whether increasing metformin 
levels affect its elimination in an ex vivo isolated kidney 
perfusion model. Beside passive filtration, metformin 
and creatinine both are transported within the proximal 
tubules by the same influx transporter, OCT-2.2 There-
fore, high creatinine concentrations might competitively 
interact with tubular transport of metformin.42 However, 
a similar amount of creatinine was used in both models, 

Figure 4  (A, B) Gene expression encoding for transporters present in the proximal tubules of the rat kidneys that are involved 
in basolateral uptake (OCT-2), and apical efflux of metformin, respectively (OCT-1, MATE-1 and MATE-2K). The exact role of 
OCT-3 in metformin transport is currently unclear. (C) Gene expression of transporters in porcine kidneys. Data are generated 
through real-time PCR using cortical kidney tissue obtained at the end of normothermic machine perfusion, and are expressed 
as mean±SEM in all panels. Primers used for this analysis are provided in online supplementary table 4. *P<0.05. MATE, 
multidrug and toxin extrusion transporter; OCT, organic cation transporter.
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diminishing this effect across experimental groups. When 
exposed to extremely high metformin concentrations, 
we found that indicators of renal function were relatively 
unaffected. Long-term metformin use of patients under 
normal circumstances and during acute illness was associ-
ated with mixed, but in all cases, limited effects on renal 
function.43–49

This study has important clinical implications. 
Metformin is currently contraindicated in patients 
with significant renal dysfunction because of the risk of 
metformin accumulation and lactic acidosis.4 A better 
understanding of the pathophysiological mechanism 
causing metformin-associated lactic acidosis is paramount 
to identify patients at risk for this severe complication of 
metformin therapy. We believe our findings suggest that 
when metformin exceeds a certain threshold level, these 
transporters might get overwhelmed ultimately leading 
to metformin-induced lactic acidosis.

Surprisingly, the therapeutic concentrations of 
metformin in humans remain unknown. The US Food 
and Drug Administration reports that 5 mg/L is the 
maximal level measured during controlled clinical trials 
which served as basis of approval for metformin, and 
thus this level is often considered as toxic threshold.50 
In rats pretreated with metformin whose kidneys were 
not perfused metformin and during the first 90 min 
of normothermic perfusion of porcine kidneys, the 
metformin concentration in plasma remained below this 
level. Importantly, the metformin concentrations used 
in the other experimental groups in the rat study, and 
during the second half of NMP of porcine kidneys should 
be considered as massive doses which are associated with 
severe toxicity in both animals and humans when admin-
istered systemically.30 36

This study has some limitations which have to be 
pointed out. To increase the robustness of our findings, 
we applied two different study designs using parallel 
pretreated groups with distinct doses of metformin in the 
rat study and administration of increasing amounts of 
metformin during NMP in the porcine study. However, the 
concentration of metformin in perfusion fluid increased 
quickly, which might have affected our ability to find an 
effect as we did not measure metformin clearance contin-
uously. We investigated the effects of metformin on its 
elimination at a functional level, using clinically relevant 
biomarkers that unfortunately could not provide more 
in-depth answers. We were unable to determine alter-
ations in mitochondrial respiration, as that would require 
freshly isolated mitochondria. Furthermore, the results 
of the rat study were largely dependent on the compar-
ison of rats pretreated with metformin whose kidneys 
subsequently were not perfused with metformin on the 
one hand with the other experimental groups on the 
other hand. In contrast, we only assessed changes over 
time of metformin-treated kidneys in the porcine study. 
Probably inherent to NMP models in general,14–16 18 
substantial variability is apparent for all outcome param-
eters including metformin clearance. Because we found 

similar dose-dependent results across both models, we 
do not believe that variability in renal function hampers 
interpretation of our results.

In conclusion, metformin clearance was considerably 
higher than creatinine clearance, indicating secretion of 
metformin during ex vivo NMP of both rat and porcine 
kidneys. Metformin clearance was reduced under 
increasing concentrations of plasma metformin, whereas 
creatinine clearance and fractional sodium excretion 
remained relatively unaffected. This can be explained 
by the saturation of OCTs rather than a self-inhibitory 
effect, but this observation should be considered in light 
of short-term exposure to high levels of metformin in our 
study. As patients with metformin-induced lactic acidosis 
presumably are exposed to toxic metformin concentra-
tions for a longer period, it remains unknown whether a 
self-inhibitory effect contributes to metformin accumula-
tion in humans.
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