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dietary iron intake in these children may help to partly 
explain the phenomenon.

In a study of 15 963 Asian adults aged 16–80 years, 
subjects in the highest serum ferritin quartiles tended to 
be older.36 However, no relationship was found between 
ferritin levels and the children’s age in the current study, 
in which the range of age (5–17 years) was smaller.

In the current study, ferritin levels were positively 
correlated with blood glucose levels at all four time points 
after glucose administration in the OGTT. Ferritin also 
positively correlated with each of the following indices: 
blood pressure (SBP and DBP), blood lipids (choles-
terol, LDL, and TG), indicators of hepatic function (ALT, 
AST, and �6-GT), and hepatic fibrosis indicators (PCIII 

and CIV). Previous studies in adults showed a positive 
correlation between ferritin and glucose levels, insulin 
levels, HOMA-IRs,36 insulin resistance, and abdominal 
obesity.36 37 Iron load also affects the development of 
diabetic retinopathy and diabetic nephropathy.38 Body 
iron storage was also associated with one or more compo-
nents of metabolic syndrome,39 as well as obesity-related 
metabolic complications.40 The current study demon-
strated that the correlation between obesity-related meta-
bolic disorders and high ferritin levels can start as early as 
childhood. Among all these disorders, impaired glucose 
tolerance is most remarkable since ferritin was positively 
correlated with blood glucose levels at all four time points 
after glucose administration during the OGTT.

Figure 5  Western blotting results for NF-κB p-p65 and p65 levels in different cell groups and distribution of NF-κB p-p65 in 
different groups of cells. (A) Compared with the HG group, the HG+FC group expressed higher levels of NF-κB p-p65, while 
the HG+NAC and HG+BAY 11-7082 groups had lower levels of p-p65. Compared with the HG+FC group, the HG+FC+NAC, 
and HG+FC+BAY 11-7082 groups had lower levels of p-p65. There was no difference in the expression levels of p65 among 
different groups. **P<0.01 versus HG; ##P<0.01 versus HG+FC. (B) Compared with the HG group, the amount of p-p65 localized 
in the nucleus was increased in the HG+FC group. **P<0.01. DAPI, 4',6-diamidino-2-phenylindole; DFO, deferoxamine; FC, 
ferritin citrate; HG, high glucose; NAC, N-acetyl-cysteine; NF-κB, nuclear factor-κB; p-p65, phosphorylated-p65.
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It should be noted that ferritin is also a known indi-
cator of inflammation. It is still hard to tell whether high 
ferritin levels reflect inflammation caused by hypergly-
cemia or indicate iron overload, which can also lead to 
inflammation. In the current study, ferritin levels were 
not correlated with indicators of acute inflammation, 
including white cell counts, neutrophils, and platelet 
counts. However, after controlling for waist to height 
ratio, ferritin was still correlated with metabolic disor-
ders, including impaired glucose tolerance, dyslipid-
emia, and impaired hepatic function. Moreover, obese 
children with metabolic syndrome had significantly 
higher ferritin levels than obese children without meta-
bolic syndrome. This suggests that ferritin levels may be 
related to the severity of chronic low-grade inflamma-
tion in obese children, which is associated with obesity 
comorbidities.

We previously reported that IMT was increased in obese 
children.27 In the current study, IMT was correlated posi-
tively with BMI, but not ferritin or blood glucose levels. 
Conflicting data have been reported regarding the rela-
tionship between ferritin and IMT. Some studies showed 
that increased serum ferritin levels are independently 
associated with IMT and carotid plaques in patients with 
non-alcoholic fatty liver disease41 or in women but not 
men,21 while other studies showed that ferritin levels 
were only related to ORs for carotid plaque prevalence 
but not IMT,42 or the studies found no relationship.43

Ferritin levels were related to both SBP and DBP but 
not IMT. The reason could be that the early vascular 
changes already led to decreased vascular elasticity before 
IMT increased. Another possible reason is that inflam-
mation was also involved in the physiological process of 
elevated blood pressure and the ferritin partly indicated 
the severity of inflammation. Follow-up evaluations of 
IMT may be needed to further study the impact of iron 
overload on IMT.

The above results indicate that increased ferritin 
levels and hyperglycemia coexist in obese populations 
as early as childhood. However, no morphological 
changes in carotid arteries were related to ferritin levels 
or hyperglycemia, at least during childhood. Therefore, 
we explored the role of iron overload in the vascular 
functional impairment caused by hyperglycemia at the 
cellular level. The results demonstrated that, compared 
with high glucose alone, ferric citrate could potentiate 
cell damage in a concentration-dependent manner, 
as apoptosis increased and viability decreased. Ferric 
citrate also decreased NO and increased ET levels in cell 
supernatants and changed the NO to ET ratio, which 
resulted in vasodilation dysfunction. Furthermore, ferric 
citrate increased oxidative stress, as measured by ROS, 
MDA, and SOD content. The iron chelator DFO or the 
reducing agent NAC could rescue the damage caused by 
high glucose and ferric citrate, which further confirmed 
the effect of iron overload and the involvement of oxida-
tive stress. NAC could also offset the cell injury caused by 
high glucose.

Among many factors inducing hyperglycemia-induced 
endothelial cell dysfunction, the NF-κB pathway is 
important. NF-kB activation also mediates the oxida-
tive stress caused by AGE-LDL.44 45 The NF-κB pathway 
may also play a role in ferritin-induced endothelial 
cell dysfunction. Ferric citrate also potentiated the cell 
damage caused by high glucose. However, it is unclear 
whether the NF-κB pathway is involved in the aggravating 
effects of ferritin citrate or what downstream signal 
pathway may be involved after the NF-κB activation. To 
test if NF-κB pathway was involved, p-p65 was evaluated in 
different cell groups. Cells cultured with ferritin citrate 
and high glucose expressed increased levels of p-p65 
compared with cells cultured with high glucose alone. 
In addition, more p-p65 translocated to the cell nucleus 
in the HG+FC group, indicating increased activation of 
the NF-κB pathway when ferritin citrate was added to 
cells under high glucose conditions. The NF-κB pathway 
inhibitor BAY 11-7082 reduced the cell damage caused 
by ferritin citrate and high glucose similar to the offset-
ting effect of DFO in cell damage, further confirming the 
involvement of the NF-κB pathway.

DNA microarrays were used to screen the downstream 
genes after NF-kB activation. The expression of 19 genes 
was increased by more than twofold, of which the upregu-
lation of 6 genes potentially involved in the observed cell 
damage (AKT1, CCL2, ICAM1, CXCL8, NF-κB2, TNF) was 
confirmed by quantitative PCR. Gene ontology enrich-
ment analyses revealed that inflammatory response, 
lipopolysaccharide-mediated signaling pathway, protein 
kinase B signaling, and positive regulation of NO biosyn-
thesis are the main processes activated in cells in response 
to iron overload and high glucose.

The current study has two possible limitations. First, 
even though it is the first study on ferritin levels, IMT, 
and glucose status in obese children, the sample size of 
196 may introduce bias. Second, although we revealed 
that iron overload aggravated high glucose-induced 
endothelial dysfunction at the cellular level, as a cross-
sectional study, we failed to reveal a relationship between 
IMT and ferritin or blood glucose in obese children. A 
follow-up of patients to measure IMT and ferritin levels 
may help show the long-term impact of iron overload on 
the early changes leading to arteriosclerosis.

In conclusion, the current study shows that obese chil-
dren have higher ferritin levels compared with their 
healthy peers. Ferritin levels were positively correlated 
with hemoglobin levels, which were also increased in 
obese children. Furthermore, ferritin levels were posi-
tively correlated with obesity-related metabolic disorders, 
including impaired glucose tolerance, higher blood 
pressure, dyslipidemia, and impaired hepatic func-
tion. Although there was no correlation between artery 
morphological change and ferritin or blood glucose 
levels, the results at the cellular level showed a signifi-
cantly higher rate of apoptosis, higher levels of oxida-
tive stress, and impaired vasomotor function caused by 
iron overload under high glucose but not low glucose 
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conditions. NF-κB activation, inflammatory response, 
lipopolysaccharide-mediated signaling pathway, protein 
kinase B signaling, and regulation of NO biosynthesis 
may be involved in the high glucose-induced cell damage 
aggravated by iron overload. Evaluating iron load as 
well as determining the optimal levels of iron in obese 
children, especially those with hyperglycemia, may help 
reduce endothelial cell dysfunction and decrease future 
risk of cardiovascular disease.
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