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Figure 6  Bone marrow transplant (BMT) study reveals no effect on metabolic phenotype. (A) Schematic diagram of BMT 
study. Changes in (B) body weight (BW), (C) % fat mass, and (D) % lean mass. Week 25 (E) oral glucose tolerance test (OGTT; 
3 g/kg lean), (F) area under the curve (AUC), (G) fasting glycemia, (H) plasma insulin levels (n=6–12). Week 26 (I) intraperitoneal 
insulin tolerance test (IPITT; 0.6 U/kg body weight for animals on normal chow (NC), or 0.75 U/kg body weight for animals fed 
high-fat diet (HFD)), (J) AUC. Chemotaxis of (K) CD11b+ bone marrow (BM) monocytes isolated following completion of the 
BMT study from wild-type (WT) and Gpr21−/− recipient animals in response to 100 ng/mL monocyte chemoattractant protein-1 
(MCP-1). Post study relative gene expression of inflammatory and energy expenditure markers in (L) epididymal white adipose 
tissue (WAT) and (M) liver, as measured by qPCR (n/d=not detected). All data are presented as mean+SEM (n=6–12, unless 
otherwise stated). Statistical significance was determined by two-way analysis of variance (ANOVA) with Tukey’s multiple 
comparison test compared with wild-type NC, with *p<0.05, **p<0.01 and ***p<0.001 deemed significant, compared with wild-
type HFD, with #p<0.05, ##p<0.01, ###p<0.001 and ####p<0.0001 deemed significant, and compared with t=0 (min), with ˆp<0.05 
and ˆˆp<0.01 deemed significant.
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increased Ccr2 in liver was abrogated in Gpr21−/− recip-
ient animals (figure 6L–M, n=6–12). At a cellular level, 
HFD significantly elevated the proportion of Ly6Chi 
monocytes in the SVF of eWAT compared with NC-fed 
wild-type animals (online supplemental figure 3a–c), but 
this difference was lost in Gpr21−/− recipient mice. Simi-
larly, on a NC diet, wild-type recipient mice had higher 
levels of Ly6Clo compared with Ly6Chi monocytes, a 
difference that was absent in Gpr21−/− recipient animals 
(online supplemental figure 3d,e). These data confirm 
that Gpr21−/− recipient mice largely retain the MCP-1/
CCR2 regulatory phenotype, but not protective effects 
on glucose homeostasis.

DISCUSSION
There is significant debate over GPR21 as a therapeutic 
target for metabolic diseases. Previous studies of Gpr21−/− 
mice reported improvements in glucose tolerance and 
insulin sensitivity in mice fed HFD, putatively driven 
by reduced levels of metabolic tissue inflammation.11 12 
Subsequent studies ascribed this phenotype to modu-
lation of Rabgap1, the gene in which Gpr21 is nested,13 
questioning the role of GPR21 in regulating metabolism 
and/or inflammation.

Current therapies for T2D focus primarily on β-cell 
dysfunction and insulin resistance. However, the role of 
chemokine and cytokine-mediated chronic, low-grade 
inflammation in the pathophysiology of T2D and its 
complications has gained traction as an alternative area 
for therapeutic intervention.27 Consumption of high-fat 
foods and reduced physical activity leads to alterations 
in immune cell populations. Furthermore, a significant 
increase in the expression levels of proinflammatory 
mediators, including interleukin (IL)-1β, IL-6, IL-10 
and MCP-1, is routinely observed in patients with T2D,5 
shifting the balance between M2 anti-inflammatory and 
M1 proinflammatory macrophages. Efforts targeting this 
increased cytokine release have focused on neutralizing 
antibodies or anti-inflammatories, including anakinra 
(IL-1), salsalate (IKKbeta–NF-kappaB inhibition) and 
TNF antagonists.28 29 This lack of efficacy is exemplified 
by the failure of canakinumab, an IL-1β-targeted mono-
clonal antibody, to reduce the incidence of new onset 
T2D, despite ameliorating levels of high-sensitivity C-re-
active protein, and IL-6.30 31 It remains to be seen whether 
a therapeutic agent focused on an ‘upstream’ regulator 
of chronic, subclinical inflammation might be more 
effective than targeting individual inflammatory media-
tors. Establishing the role of GPR21 in regulating glucose 
homeostasis and inflammation is thus critical to its evalu-
ation as a potential therapeutic target.

Collectively, our findings suggest that deletion of 
GPR21 inhibits inflammation caused by high-fat feeding, 
in accordance with previous studies.11 12 As Rabgap1 
expression was preserved in our CRISPR-Cas9 knockout 
mouse, the effects on inflammation and improvement in 
glucose homeostasis in the whole-body knockout study 

are likely due to Gpr21 deletion. This contrasts with the 
findings of Wang et al,13 who used transcription activator-
like effector nucleases (TALEN) technology to generate 
a Gpr21−/− mouse with unperturbed Rabgap1, and saw no 
change in glucose handling. However, the report lacked 
a chronic HFD group and it was only after such a regimen 
that our study revealed the beneficial effects of Gpr21 
deletion. Furthermore, it is not clear to what extent the 
gene-editing methods employed might contribute to the 
discrepancy, beyond reported differential editing effi-
ciencies.32 33

Despite the correlation observed in both clinical 
samples and the whole-body knockout mouse between 
GPR21, metabolic parameters, and inflammatory 
markers, the results of the BMT study suggested that 
effects on glucose metabolism and inflammation were 
not directly linked, as hematopoietic-specific deletion of 
GPR21 had no effect on glucose homeostasis. The most 
parsimonious explanation is that GPR21 regulates both 
monocyte-driven inflammation and glucose homeostasis, 
although with limited or no overlap in the mechanisms 
involved or functional sequelae, consistent both with 
previous work from our group demonstrating a decou-
pling of inflammation and insulin resistance6 and the 
mixed literature surrounding the effects of CCR2 antago-
nists on glucose homeostasis.34 35

With our Gpr21−/− in vivo metabolic studies, deletion 
of Gpr21 in cells outside of the hemopoietic lineage is 
required to see effects on HFD-induced changes in meta-
bolic endpoints. Although Gpr21 has widespread expres-
sion, a potential locus for this effect is the hypothalamus, 
since this tissue displays the highest expression levels of 
the receptor. In the original Osborn et al11 study, a discon-
nect in body weight effect between BMT and whole-
body knockout studies (similar to that observed herein) 
prompted the authors to silence Gpr21 in the hypo-
thalamus using lentiviral shRNA, leading to a modest 
reduction in body weight without changes in glucose 
homeostasis. This suggests additional, non-hemopoietic 
roles for GPR21 that contribute to the whole-body 
knockout phenotype and may enable separation between 
the observed improvement in glucose homeostasis and 
their reduced body weight. However, the role of myeloid 
populations in the brain cannot be excluded and would 
require further study, for example, with a conditional 
knockout mouse.

The only major difference between our BMT study and 
that of Osborn et al11 is the method used to produce the 
knockout mouse. This suggests that Rabgap1 could play 
an as yet unidentified role in immune cell function and 
glucose metabolism (expression was impaired in the orig-
inal Gpr21−/− mouse). For example, Rabgap1 is involved 
in the coordination of microtubule and Golgi dynamics 
during the cell cycle and metaphase to anaphase transi-
tion in HeLa cells.36 37 Another explanation is that the 
BMT itself might protect against an insulin resistant 
phenotype. In a recent study, a syngeneic BMT of HFD-
fed C57BL/6 mice following lethal irradiation, yielded 
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reduced HFD-induced obesity, reduced adipose tissue 
immune cell infiltration, and decreased insulin secretion 
when compared with HFD control mice.38 Furthermore, 
in similar studies using ob/ob mice, reduced adiposity 
was observed following a BMT compared with non-BMT 
controls,39 perhaps highlighting a limitation of BMT in 
metabolic research.

The most compelling data obtained from this study 
was that deletion of GPR21, in either human and mouse 
monocytes, significantly decreases inflammatory chemo-
taxis, most notably and specifically to MCP-1, without a 
change in the expression of its cognate receptor, CCR2. 
As migration is a highly complex and tightly regulated 
process,40 41 we investigated whether changes upstream 
of monocyte extravasation could have been disrupted. 
Using confocal imaging techniques, we showed that 
Gpr21−/− CD11b+ BMMs display delayed polarization in 
response to MCP-1. To what extent this delay is causative 
of reduced monocyte migration requires further inves-
tigation. However, transcriptomic analysis of Gpr21−/− 
CD11b+ BMMs revealed downregulation of key genes 
involved in the adhesion cascade, including Itgb3, Itgax 
and VCAM, indicative of altered extracellular matrix 
organization and degradation, that may play a role in 
the altered chemotactic responses. A comprehensive 
analysis of these integrin markers at the protein level, 
as well as monocyte interactions with endothelial cells, 
would be needed to further elucidate the mechanism(s) 
by which deletion of Gpr21 regulates monocyte migration 
to MCP-1.

Intriguingly, the RNA-Seq analysis identified a number 
of other genes of interest. Both Jun and Fos were signifi-
cantly upregulated in the Gpr21−/− CD11b+ BMMs. 
Differentiation of human PBMCs by M-CSF results in 
anti-inflammatory macrophages42 and an upregulation of 
both Jun and Fos,43 allowing us to speculate that Gpr21−/− 
CD11b+ BMMs might display an M2, anti-inflammatory-
like phenotype and that GPR21 could be involved in 
suppressing chemokine expression and signaling, which 
correlates with the reduced effect of MCP-1. Further-
more, these data may indicate GPR21 as a potential 
target for the treatment of inflammatory diseases where 
MCP-1 and/or CCR2 has pathogenic roles, including 
atherosclerosis.

In summary, using a new Gpr21 knockout mouse 
model, we demonstrate that whole-body deletion of 
the receptor ameliorates glucose intolerance induced 
by HFD, which is accompanied by a normalization of 
selected inflammatory markers. We also show that GPR21 
regulates inflammatory chemotaxis in both mouse and 
human monocytes, likely due to altered monocyte polar-
ization and adhesion/integrin expression and function, 
although a BMT study suggests that these two phenotypes 
are likely not linked. Finally, we describe significantly 
higher expression of GPR21 in patients with T2D, which 
appears to correlate with CCR2 expression and func-
tion. Collectively, these data suggest that an inhibitor of 
GPR21 could yield improvements in both obesity-induced 

insulin resistance and in diseases in which CCR2-driven 
inflammation is a cardinal feature, opening up a number 
of therapeutic indications in which GPR21 antagonists 
might be effective.
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ONLINE SUPPLEMENTAL MATERIAL  

 

Supp Fig. 1. Whole-body deletion of Gpr21 reveals no significant changes in the 

metabolic phenotype after 6-weeks HFD. Changes in (a) BW (week 6) (b) oral glucose 

tolerance test (OGTT; 3 g/kg lean), (c) OGTT area under the curve (AUC), (d) fasting 

glycaemia. Quantitative analysis of H&E staining of histological samples of the (e) liver and 

(f) eWAT from wild-type and CRISPR Gpr21 KO mice fed normal chow or HFD. All data 

are presented as mean + SEM (n=6-12, unless otherwise stated).  
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Supp Fig. 2. RNA-Seq analysis of CD11b+ BMMs identifies significant effects of Gpr21 

deletion on genes and pathways involved in inflammation and GPCR signalling 

Illustration of (a) number of genes showing false detection rate < 0.05, (b) deconvolution 

differentially expressed genes (DEGs) by significance, (c) separation of DEG rate by up and 

downregulated genes. Heatmap of the top 50 genes (d) with upregulated genes in yellow, and 

downregulated genes in red (full values shown in Supp Table 6 & 7). Gene set enrichment 
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analysis (GSEA, e) using gene sets from Reactome revealed upregulated pathways involved 

in Gpr21 function, including (f) inflammatory response, (g) monocyte chemotaxis, and (h) 

GPCR signalling. All data are presented as mean + SEM, (n=5) 
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Supp Fig. 3. Immune cell analysis of bone marrow transplant study. Analysis of CD45+ 

(a) monocytes, (b) Ly6Chi, (c) Ly6Clo, (d) Ly6C in wild-type, (e) Ly6C in CRISPR Gpr21
-/-

, as measured by FACS analysis. All data are presented as mean + SEM. Statistical 

significance was determined by two-way ANOVA with Tukey’s multiple comparison test 

compared to wild-type NC, with *P<0.05 and **P<0.01 deemed significant.  
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Supp Table 1. Summary of the guide RNAs used to generate the Gpr21
-/-

  

Region Sequence 

5’ end of exon 5’ TCCAAAGTAAGGGCCGTTTA 3’ 

3’ end of exon 5’ TTTAGATTAACATATCAGCT 3’ 

 

Supp Table 2. Summary of the primers used to genotype the Gpr21
-/-

 cohorts 

 Gene Forward Reverse 

CRISPR 3’UTR n/a AGTCTGTGCACCAAAAAGCAA 

CRISPR 5’UTR 
TCAGCATGCAGAATCACAGGTA TGGAATAGGGAAAGCCAACA 

 

Supp Table 3. Summary of the primers used in this study 

 Gene Forward Reverse 

Actb2 CATTGCTGACAGGATGCAGAAGG TGCTGGAAGGTGGACAGTGAGG 

Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 

Ccl2 GCTACAAGAGGATCACCAGCAG GTCTGGACCCATTCCTTCTTGG 

Ccr2 GCTGTGTTTGCCTCTCTACCAG CAAGTAGAGGCAGGATCAGGCT 

Cd68 ATCCCCACCTGTCTCTCTCA ACCGCCATGTAGTCCAGGTA 

Gpr21 TGTGGCTTTTGTTTGGATTTC GGGCAGAGGGAGGAAGATTA 

F4/80 CGTGTTGTTGGTGGCACTGTGA CCACATCAGTGTTCCAGGAGAC 

Il1β TGGACCTTCCAGGATGAGGACA GTTCATCTCGGAGCCTGTAGTG 

Ltb4r TGCCCATTGTTCTACTGTCTG GCGTTTCTGCATCCTTTTCAG 

Nlrp3 CTCCAACCATTCTCTGACCAG ACAGATTGAAGTAAGGCCGG 

Tnfα GGTGCCTATGTCTCAGCCTCTT GCCATAGAACTGATGAGAGGGAG 

Rabgap1 5-6 TCAGGATACATGTCTTTCGCTG GTAAAGATGTCGCTGTCAGGAG 

Rabgap1 19-20 CGCTCAGAAGAAAATGCAAA CTGCTCCCTCATGGTATGGT 
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Supp Table 4. Summary of the antibodies used in this study 

 Antibody Clone Supplier Catalogue number 

PB-CD45 104 Australian Biosearch, AUS 109819 

Alexa 488-Ly-6C 

Alexa 647-Ccr2 

PE-Cx3cr1 

HK1.4 

475301 

n/a 

Thermo Fisher, AUS 

In Vitro Technologies, AUS  

In Vitro Technologies, AUS  

53-5932-82 

FAB5538R 

FAB5825P 

 

Supp Table 5. RNASeq full data set; attached as excel worksheet – available on request 

Supp Table 6. Top significant genes upregulated in Gpr21
-/- 

CD11b
+ 

BM monocytes 

Row names  logFC  logCPM  FDR  

ENSMUSG00000097296 Gm26532  1.2  4.1  3.36E-18  

ENSMUSG00000090582 Gm17024  1.1  3.2  2.27E-11  

ENSMUSG00000001627 Ifrd1  0.5  6.8  1.50E-08  

ENSMUSG00000026628 Atf3  0.9  7.3  2.62E-07  

ENSMUSG00000019850 Tnfaip3  0.5  6.7  2.95E-06  

ENSMUSG00000026358 Rgs1  0.5  6.4  2.95E-06  

ENSMUSG00000023034 Nr4a1  0.5  5.9  2.95E-06  

ENSMUSG00000056708 Ier5  0.5  7.4  8.36E-06  

ENSMUSG00000058755 Osm  0.5  5.3  1.22E-05  

ENSMUSG00000052684 Jun  0.5  10.4  3.07E-05  

ENSMUSG00000106630 Igkv2-116  5.3  -1.0  3.30E-05  

ENSMUSG00000027829 Ccnl1  0.5  8.5  3.45E-05  

ENSMUSG00000032501 Trib1  0.6  5.5  4.34E-05  

ENSMUSG00000021250 Fos  0.5  11.1  6.50E-05  
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ENSMUSG00000071076 Jund  0.4  8.3  6.50E-05  

ENSMUSG00000002985 Apoe  0.6  6.6  8.32E-05  

ENSMUSG00000030560 Ctsc  0.4  9.2  1.16E-04  

ENSMUSG00000029648 Flt1  0.6  4.1  1.18E-04  

ENSMUSG00000108368 Gm45053  1.1  2.0  1.18E-04  

ENSMUSG00000069662 Marcks  0.4  5.8  1.42E-04  

ENSMUSG00000000078 Klf6 0.4 9.6 1.73E-04 

ENSMUSG00000109244 Gm44751 0.8 4.0 3.36E-04 

ENSMUSG00000023067 Cdkn1a 0.5 5.1 3.95E-04 

ENSMUSG00000103696 Gm37531 0.7 3.9 3.95E-04 

ENSMUSG00000024966 Stip1 0.4 6.6 3.95E-04 

ENSMUSG00000071072 Ptges3 0.3 6.8 4.57E-04 

ENSMUSG00000030357 Fkbp4 0.3 6.8 9.52E-04 

ENSMUSG00000079339 Ifit1bl1 0.8 2.0 1.01E-03 

 

Supp Table 7. Top significant genes downregulated in Gpr21
-/- 

CD11b
+ 

BM monocytes 

Row names  logFC  logCPM  FDR  

ENSMUSG00000092274 Neat1  -1.5  9.9  3.49E-78  

ENSMUSG00000053164 Gpr21  -3.6  0.7  3.90E-28  

ENSMUSG00000024222 Fkbp5  -0.7  7.0  3.57E-17  

ENSMUSG00000016552 Foxred2  -0.4  6.3  4.21E-06  

ENSMUSG00000076666 Ighv14-4  -2.6  1.0  1.75E-05  

ENSMUSG00000021775 Nr1d2  -0.6  3.7  3.55E-05  

ENSMUSG00000096638 Ighv2-9  -2.9  0.3  5.39E-05  
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ENSMUSG00000047909 Ankrd16  -0.4  5.4  5.39E-05  

ENSMUSG00000076545 Igkv4-72  -2.3  2.0  1.16E-04  

ENSMUSG00000004110 Cacna1e  -1.1  1.0  1.42E-04  

ENSMUSG00000039126 Prune2  -0.9  3.2  1.44E-04  

ENSMUSG00000095583 Ighv14-2  -1.5  0.4  1.44E-04  

ENSMUSG00000103420 Gm37537  -1.8  -1.1  2.10E-04  

ENSMUSG00000096844 Igkv6-14  -4.6  1.7  2.39E-04  

ENSMUSG00000076569 Igkv5-39  -1.5  1.5  2.66E-04  

ENSMUSG00000109481 Gm45130  -1.8  -0.8  4.10E-04  

ENSMUSG00000022389 Tef  -0.5  4.2  4.57E-04  

ENSMUSG00000022708 Zbtb20  -0.3  5.6  4.87E-04  

ENSMUSG00000031167 Rbm3  -0.3  8.1  4.87E-04  

ENSMUSG00000076672 Ighv3-6  -1.1  3.0  6.15E-04  

ENSMUSG00000108168 Gm43864 -1.2 0.3 7.92E-04 

ENSMUSG00000104452 Ighv8-8 -1.5 2.3 8.34E-04 
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