Invasive validation of the Antares algorithm for determining central blood pressure based on upper arm oscillometric pulse waves in individuals with type 2 diabetes ## BMJ Open Diabetes Research & Care Alexander Stäuber^{1*}, Cornelia Piper², Marco Köster², Marcus Dörr^{3,4}, Stefan Richter^{5,6}, Marc-Alexander Ohlow⁷, Siegfried Eckert², Johannes Baulmann^{8,9} - 1 Movement and Training Science, Leipzig University, Jahnallee 59, 04109 Leipzig, Germany, e-mail: alexander.staeuber@uni-leipzig.de - 2 Klinik für Allgemeine und Interventionelle Kardiologie/Angiologie, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, D-32545 Bad Oeynhausen, Germany, e-mail: cpiper@hdznrw.de / mkoester@hdz-nrw.de / eckert.siegfried@web.de - 3 Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475 Greifswald, Germany / e-mail: marcus.doerr@uni-greifswald.de - 4 German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany, e-mail: marcus.doerr@uni-greifswald.de - 5 Department of Cardiology, Zentralklinik Bad Berka GmbH, Herzzentrum, Robert-Koch-Allee 9, D-99437 Bad Berka, Germany, e-mail: stefan.richter@zentralklinik.de - 6 Department of Cardiology, SRH Klinikum Burgenlandkreis GmbH, Humboldstraße 31, D-06618 Naumburg, Germany, e-mail: stefan.richter@klinikum-burgenlandkreis.de - 7 Department of Cardiology, SRH Wald-Klinikum GmbH, Strasse des Friedens 122, D-07548 Gera, Germany, e-mail: marc-alexander.ohlow@srh.de - 8 Praxis Dres. Gille/Baulmann, Keramikerstr. 61, D-53359 Rheinbach, Germany, e-mail: jbaulmann@yahoo.com - 9 Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria, e-mail: jbaulmann@yahoo.com - *Corresponding author: Alexander Stäuber | alexander.staeuber@uni-leipzig.de **Table S1**. Summary of validation protocol components and requirements of the 2017 ARTERY Society Task Force consensus statement and ANSI/AAMI/ISO 81060-2:2019. | Protocol section | Protocol item
ARTERY 2017 | Protocol requirement ARTERY 2017 | Protocol item
ANSI/AAMI/ISO
81060-2:2019
and requirement | Protocol item
undertaken
(Yes / No /
Comment) | |--|---|----------------------------------|---|---| | Study setting | Isolated room without disturbing influences | Should | Not specified | Yes | | Non-invasive
(central) BP
device
measurement
standards | List manufacturer,
model, software
version, operating
principles, signal
processing step/s,
calibration process | Must | Not specified | Yes | | | Time for BP
measures; time
points of brachial
BP and central BP;
cuff deflation
speed | Should | Must | Yes, full
description
published in Dörr
et al. [19] | | | Define and use appropriate cuff size | Must | Must | Yes, full
description
published in Dörr
et al. [19] | | | Dimensions of inflatable bladder for all cuff sizes available; process to determine cuff size | Should | Must | Yes | | | Separate validation
studies for
additional or
optional features or
functions | Must | Not specified | Yes, here focus
on central BP | | | Process/s of
quality control;
process used to
delineate
acceptable quality;
number of
unacceptable
readings; reason/s
for exclusion | Must | Not specified | Yes | | Invasive (intra-
arterial) central
BP reference
standard | Micromanometer-
tipped catheter
used if minor
inflection points to
be identified | Should | Not specified | Not applicable because no invasive waveform features are topic of this validation | | | Full description of
catheter; frequency
response and
handling
procedures | Must | Not specified | Yes, full
description
published in Dörr
et al. [19] | Table S1. (continued) | Protocol section | Protocol item
ARTERY 2017 | Protocol
requirement
ARTERY
2017 | Protocol item
ANSI/AAMI/ISO
81060-2:2019
and requirement | Protocol item
undertaken
(Yes / No /
Comment) | |-------------------------------------|---|---|---|--| | | Performance
comparison of
fluid-filled catheter
with
micromanometer-
tipped catheter | May | Not specified | No | | Data acquisition at rest | Period of
undisturbed rest;
medications used | Should | Not specified | Yes | | | No talking. Free from acute hemodynamic interventions | Must | Not specified | Yes | | | Test device
compared with
reference over
time-period
matching the test
device deflation
cycle; recorded
under stable
conditions | Must | Must | Yes | | | Complete description of protocol; time interval between test device and reference measures | Must | Not specified | Yes | | Data acquisition at BP intervention | Hemodynamic change from resting state | May | Must, in case of
an intended use
of automated
non-invasive BP
device in physical
exercise testing | Not applicable because no intervention done | | | Description of the intervention procedure | Must | Not specified | - | | Sample
characteristics | Sample size of at
least 85 adults | Should | Sample size of at least 15 patients with not more than 10 valid BP measurements per patient. At least 150 valid BP measurements | ARTERY 2017 requirements were fulfilled but ANSI/AAMI/ISO 81060-2:2019 requirements were not | | | Sex distribution of
at least 30% male
and female | Should | Must | No, study
population
consisted of 76%
males and 24%
females | Table S1. (continued) | Protocol section | Protocol item
ARTERY 2017 | Protocol requirement ARTERY 2017 | Protocol item
ANSI/AAMI/ISO
81060-2:2019
and requirement | Protocol item
undertaken
(Yes / No /
Comment) | |--------------------------|--|----------------------------------|--|---| | | Participants should have sinus rhythm unless the device is being tested for accuracy during arrhythmias | Should | Not specified | Yes | | | Devices should be tested over a range of BP | Should | Must | Yes, but not
testable for all
proposed
indicative ranges,
see Table S2 | | | Device accuracy
should be tested
across a range of
heart rates (i.e.,
60-100/min) | Should | Not specified | Yes | | Statistical requirements | Description of subjects | Must | Not specified | Yes | | | Comparison between non- invasive and reference BP's must report mean difference, SD of the mean difference, and limits of agreement, illustrated by modified Bland- Altman plots | Must | Comparison
between non-
invasive and
reference BP's
must report mean
difference and SD
of the mean
difference | Yes, mean
difference
between the
estimated and
invasively
measured central
BP was calculated
according to
ANSI/AAMI/ISO
81060-2:2019 | | | Scatter plots of the measures obtained with the non-invasive device (on Y axis) the reference method (on X axis), with the line of equality | May | Not specified | Yes | | | Absolute BP differences from the reference should be presented as a clinical meaningful illustration of the results but without a pass/fail criteria | Should | Not specified | No | BP, blood pressure; SD, standard deviation **Table S2.** Invasive central (aortic) blood pressure (cBP) and data distribution of individuals with type 2 diabetes (n=119). | cBP Distribution | N (%) | - | |-------------------|---------|---| | cSBP≤100 mmHg | 8 (7) | | | cSBP>100<140 mmHg | 56 (47) | | | cSBP≥140<160 mmHg | 35 (29) | | | cSBP≥160 mmHg | 20 (17) | | | cDBP≤60 mmHg | 28 (24) | | | cDBP>60<85 mmHg | 86 (72) | | | cDBP>85<100 mmHg | 5 (4) | | | cDBP≥100 mmHg | 0 (0) | | cSBP, central systolic blood pressure; cDBP, central diastolic blood pressure **Table S3.** Beat-to-beat variations in invasive central (aortic) blood pressure (cBP) in individuals with type 2 diabetes (n=119) presented as standard deviation (SD). | SD of invasive cBP | | |--------------------|-------------------------| | cSBP [mmHg] | 4.5 ± 1.8 (1.3-9.6) | | cDBP [mmHg] | $2.4 \pm 1.1 (0.3-5.7)$ | | cMAP [mmHg] | $3.1 \pm 1.4 (0.8-7.8)$ | Values are presented as mean ± standard deviation (min-max); cSBP, central systolic blood pressure; cDBP, central diastolic blood pressure; cMAP, central mean arterial pressure