ESM - Extended supplementary material

ESM Table 1 Search terms

Cardiac autonomic neuropathy	Cardiovascular disease	Mortality			
(CAN)	events				
		Mortality			
 Diabetic neuropathy [MeSH 	Heart Arrest[MeSH	Cardiovascular mortality			
Terms]	Terms]	Perioperative mortality			
 Autonomic nervous system 	 heart failure[MeSH 	All-cause mortality			
diseases [MeSH Terms]	Terms]				
Cardiac autonomic	Heart Failure [MeSH]				
neuropathy	embolism[Mesh]				
Cardiovascular autonomic	 myocardial 				
dysfunction	ischemia[MeSH Terms]				
 Autonomic neuropathy 	Brain Ischemia[Mesh]				
 Abnormal heart rate 	 Intracranial Embolism 				
variability	and Thrombosis[Mesh]				
Autonomic Function Tests	 thromboembolism 				
Cardiac autonomic function	[Mesh]				
tests	thrombosis [Mesh]				
Cardiovascular autonomic	Stroke[Mesh]				
reflex tests	• CVD				
Severe cardiac autonomic	• CHD				
neuropathy	NSTEMI				
• 30:15 ratio	Cerebrovascular				
• E/I	accident				
• E:l	Brainstem				
 Valsalva ratio 	 Thrombosis 				
Heart rate response to deep	Heart attack				
breathing	Silent Myocardial				
 Resting heart rate variability 	ischaemia				
Sympathetic nervous system	Silent myocardial				
overactivity	infarction				
SNS overactivity	• PCI				

 Vagus nerve denervation 	Percutaneous coronary	
 Sudomotor function 	intervention	
 R-R interval variation 	MACE	
 Diabetic neuropathy 	Perioperative	
Diabetic autonomic	myocardial infarction	
neuropathy	Cardiovascular disease	
	Stroke	
	Brain ischemia	
	Vascular	
	STEMI	

ESM Table 2 Tests for autonomic function

Autonomic function tests (AFT)

- Heart-rate response to the Valsalva manoeuvre (Valsalva ratio)
- Heart-rate response to deep breathing shown by the Expiratory/Inspiratory (E/I) ratio
- Heart-rate response to standing at 30 seconds and 15 seconds (30:15 ratio)
- BP response to standing (mmHg)
- BP response to sustained handgrip (mmHg)
- Heart rate variation (HRV)
- Spectral power analysis (of high frequency, very low frequency and low-frequency bands)

ESM Table 3 Participant demographic characteristics information from all final selected articles

Study	Country	Study design			Gender (M/F)
Chen et al, 2001(32)	Taiwan	Cohort study	Type 2	CAN-: 61.3 +/- 11.4 CAN+: 64.2 +/-	CAN-: 171/70 (71%/29%)
				10.1	CAN+: 260/111 (70%/30%)
Ko et al, 2008 (25)	Korea	Cohort study	Type 2	Mean age of total study population: 58.1+/-10.7	Total study population: 431/695 (38%/62%)
Pop-Busui et al, 2017 (15)	America and Canada	Cohort study	Type 1	CAN-: 33+/-7.0 CAN+: 37+/-7.0	CAN-: 674/588 (53%/47%) CAN+:
					61/70 (47%/53%)
Vujosevic et al, 2012 (30)	Montenegro	Cohort study	Type 2	Mean age of the total study population: 64.08+/-9.06	Total study population: 43/33 (57%/43%)
Valensi et al, 2001 (20)	France	Cohort study	Type 1 and Type 2	Mean age of the total study population: 54.7 (range 30.0-70.0)	NA
Soedamah- muthu et al, 2008 (13)	31 centres in 16 European countries	Cohort study	Type 1		
O'Brien et al, 1991 (22)	England	Cohort study	Type 1	CAN-: 45.0+/-18.0 CAN+: 46.0+/- 15.0	CAN-: 245/167 (59%/41%) CAN+: 36/48 (43%/57%)
Lee et al, 2003 (19)	Korea	Cohort study	Type 2	CAN-: 58.0+/-10.0 CAN+: 65.0+/-8.0	NA
Ewing et al, 1980 (18)	Scotland	Cohort study	NA	Mean age of the total study	CAN-: 33/0 (100%/0%)

Observation	O ₂ th	Oalant	T 0	population: 46.1 (range 24.0-69.0)	CAN+: 29/11 (73%/27%)
Cha et al, 2016 (31)	South Korea	Cohort study	Type 2	Mean age of the total study population: 62.5+/- 8.7	Total study population: 65/94 (41%/59%)
Astrup et al, 2006 (24)	Denmark	Cohort study	Type 1	Diabetic nephropathy group: 41.0+/-9.0 Without diabetic nephropathy group: 43.0+/- 10.0	Total study population: 237/151 (61%/39%)
Lykke et al, 2008 (26)	Denmark	Cohort study	Type 1	Normoalbuminuric group (n=192): 42.7+/-10.2 Nephropathy group (n=199): 40.9+/-9.6	Total study population: 240/151 (61%/39%)
Cohen et al, 2003 (23)	America	Cohort study	Type 2	Stroke (endpoint) group: 62.3+/-6.9 no stroke (endpoint) group: 58.4+/-8.4	Male stroke (endpoint) group: 24/17 (59%/41%) No stroke (endpoint) group: 555/354 (61%/39%)
Okada et al, 2010 (29)	Japan	Cohort study	Type 2	Preserved BRS = 55.6+/-10.5 Depressed BRS = 60.6+/-12.0	Preserved BRS: 63/36 (64%/36%) Depressed BRS: 31/54 (36%/64%) Total study population: 94/90 (51%/49%)
Navarro et al, 1996 (34)	America	Cohort study	Type 1	Mean age of the total study population: 33.4+/-9.0	Total study population: 244/301 (45%/55%)

Sampson et al 1990 (21)	England	Cohort study	Type 1	Group A: 37.1+/- 1.2 Group B: 39.5+/- 1.7 Group C: 35.5+/- 1.3	Group A: 23/26 (47%/53%) Group B: 10/14 (42%58%) Group C: 22/16 (58%/42%)
Töyry et al, 1996 (14)	Finland	Cohort study	Type 2	NA	Total study population: 70/63 (53%/47%)
Veglio et al, 2000 (38)	Italy	Cohort study	Type 1	NA	Total diabetic population: 196/183 (52%/48%)
Ziegler et al, 2008 (17)	Germany	Cohort study	NA	Mean age of the total study population: 65.2+/-5.5	Total diabetic population: 82/78 (51%/49%)
Sawicki et al, 1996 (36)	Germany	Cohort study	Type 1	Mean age of the total study population: 40.0+/-11.0	Total study population: 50/35 (59%/41%)
Young et al, 2009 (27)	14 centres in the United States and Canada	Cohort study	Type 2	No screening (n=562) group: 60.8 +/-6.4 Screening (n=561) group: 60.7 +/-6.7	No screening (n=562) group: 311/251 (55%/45%) Screening (n=561) group: 290/271 (52%/48%)
Sawicki et al, 1998 (37)	Germany	Case- control follow up study	Type 2	Median age of the total study population: 63.0 (interquartile range 54.0–71.0)	Total study population: 68/148 (31%/69%)

Pop-Busui et al, 2010 (28)	America and Canada	Cohort study	Type 2	CAN1: 62.5+/-6.7 CAN-: 61.9+/-6.7	CAN1: 288/284 (50%/50%) CAN-: 4606/2957 (61%/39%)
Rathmann et al, 1993 (35)	Germany	Cohort study	Type 1 and type 2	CAN-: 42.9+/-12.0 CAN+: 43.3+/- 12.0	CAN-: 12/23 (34%/66%) CAN+: 12/23 (34%/66%)
Ewing et al, 1976 (16)	Scotland	Cohort study	NA	Mean age of the total study population: 47.0 (range 24.0-63.0)	31/6 (84%/16%) initially. 30 patients were re- examined 18 months to 2 years after initial selection for CAN, but sex was not available for them.
Jermendy et al, 1991 (33)	Hungary	Cohort study	Type 1 and type 2	Mean age of diabetic population: 46.3+/-1.7	Total diabetic population: 35/18 (66%/34%)

^{*}CAN, cardiac autonomic neuropathy; CAN+, cardiac autonomic neuropathy positive; CAN-, cardiac autonomic neuropathy negative; NA, information not available

ESM Table 4 Participant cardiovascular disease event and mortality rates

Study	Follow-up (years)	AFT method of assessment	Definition of CAN	Cardiovascular disease events definition	Cardiovas cular disease events % (CAN +)	Cardiovas cular disease events % (CAN -)	Mortal ity % (CAN +)	Mortalit y % (CAN -)
Chen et al, 2001 (32)	7.7	 Heart rate response to a single deep breath. Heart rate response to 6 consecutive breaths. Heart rate response to standing. Blood pressure response to standing. Heart rate response to Valsalva manoeuvre. 	Defined by scoring 3 or more following unique diagnostic criteria	NA	NA	NA	106/37 1 (29%)	29/241 (12%)
Ko et al, 2008 (25)	7.1	 E/I ratio 30:15 ratio Heart rate response to Valsalva manoeuvre 	Defined based on at least one abnormal standard test	1)New onset of ischaemic stroke	97/627 (15%)	34/499 (7%)	NA	NA

Pop-Busui et	3-9 years	1) R-R variation in	Defined as either an	1)Nonfatal	49/131	191/1262	4/131	13/1262
al, 2017 (15)	(mean 6.5	response to paced	R-R variation <15 or	myocardial	(37%)	(15%)	(3%)	(1%)
	years). In 1994,	breathing	an R-R variation 15-	infarction or stroke			*death	*death
	96% of the		19.9 in combination				from	from
	surviving DCCT	2) Valsalva manoeuvre	with a Valsalva ratio	2) death judged to			cardiov	cardiova
	cohort enrolled		<=1.5 or a decrease	be secondary to			ascular	scular
	in the EDIC	3) Postural changes in	of >10 mmHg in	CVE			diseas	disease
	observational	blood pressure	diastolic blood				es only	s only
	study in an		pressure upon and	3) subclinical				
	additional 20		while standing for	("silent") myocardial				
	years of follow-		10 min.	infarction				
	up.							
				4)Angina confirmed				
				by ischemic				
				changes with				
				exercise tolerance				
				testing or by				
				clinically significant				
				obstruction on				
				coronary				
				angiography				
				5,0				
				5)Congestive heart				
				failure with				
				paroxysmal				
				nocturnal dyspnoea,				
				orthopnoea, or				
				marked limitation of				
				physical activity				
				caused by heart				
				disease				

		6)Revascularization with angioplasty and/ or coronary artery bypass.	
		7)Major adverse cardiovascular events (MACE) defined as nonfatal myocardial infarction or stroke or CVD death	

Vujosevic et	13	1)Heart rate responses	Defined as normal	NA	16/51	4/25 (16%)	24/51	5/25
al, 2012 (30)		to the Valsalva	(all tests normal),		(31%)	*only	(47%)	(20%)
	*CAN (n=51)	manoeuvre	early (one heart rate		*only	includes		
	and control		test abnormal),		includes	cardiovasc		
	(n=25)	2)Standing up and deep	definite (two or more		cardiovasc	ular events		
	population was	breathing	heart rate tests		ular events	that led to		
	76 in total		abnormal), severe		that led to	death		
	intrahospital,	3)Blood pressure	(abnormal heart rate		death			
	however 8 died	responses to standing	tests plus one or					
	intrahospital and	up	both blood pressure					
	it isn't stated		tests abnormal), or					
	how many were	4)Blood pressure	atypical (any other					
	CAN patients vs	response to sustained	combination of					
	control.	handgrip	abnormalities).					
	Therefore,							
	cannot work out							
	how many CAN							
	vs control							
	patients were							
	part of the extra							
	hospital 10 year							
	follow-up.							

Valensi et al,	4.5	1) Heart rate response	The results of the	1)Death of cardiac	22/33	3/42 (7%)	NA	NA
2001 (20)		to the Valsalva	three tests were	origin (sudden death	(67%)			
		manoeuvre	compared with	or death caused by				
			those from a control	MI or congestive				
		2) Heart rate response	series with age	heart failure)				
		to 6 consecutive breaths	taken into account.	,				
				2)Nonfatal MI (MI				
		3) Heart rate response		was considered to				
		to standing		be a major event				
		J J		whether the patient				
				was hospitalized or				
				not)				
				,				
				3)Heart failure				
				•				
				4)Resuscitation				
				from ventricular				
				tachycardia/fibrillatio				
				n				
				5)Need for coronary				
				revascularization.				

Soedamah-	7	1)Loss of heart rate	1) Loss of heart rate	NA	NA	NA	CAN	34/1846
Muthu et al,		variability	variability with an				definiti	(2%)
2008 (13)			RR ratio of <1.04				on 1:	
		2)Postural hypotension	and/or postural				59/877	
			hypotension with a				(7%)	
			fall in systolic blood					
			pressure of >=20				CAN	
			mmHg).				definiti	
							on 2:	
			2)At least two				9/64	
			abnormal tests with				(14%)	
			a RR ratio of <1.04					
			and postural					
			hypotension with a					
			fall in systolic blood					
			pressure of >=30					
			mmHg.					

O'Brien et al, 1991 (22)	5	HRV in response to	Defined as heart rate responses below the 2.5th	NA	NA	NA	23/84 (27%)	21/422 (5%)	
		1)Supine rest	centile in two or more of the four						
		2)Single deep breath	tests.						
		3)Valsalva manoeuvre							
		4)Standing for 60 seconds							

Lee et al, 2003 (19)	3.8	1)Deep breathing tests were performed at 6 ventilations/min (abnormal RR-interval ratio <1.11) 2)Valsalva manoeuvre were done by having the patient blow at 40 mm Hg for 15 seconds (abnormal RR-interval ratio <1.21) 3)Lying-to-standing tests were performed by having the patient move from the standing to the recumbent position (abnormal RR-interval ratio <1.04). 4)Postural systolic blood pressure change was measured with the patient in the recumbent position and again after	Defined as the presence of 3 or more abnormal test results.	1)Major cardiac events were defined as either cardiac death as confirmed by review of hospital records 2)Nonfatal myocardial infarction as evidenced by the appropriate combination of symptoms, electrocardiographic study results and enzyme changes.	13/78 (17%)	0/68 (0%)	15/78 (19%)	2/68 (3%)
		4)Postural systolic blood pressure change was measured with the						

		5)Handgrip tests were measured as the increase in diastolic blood pressure during 30% maximal handgrip (abnormal blood pressure increase <10 mm Hg).						
Ewing et al, 1980 (18)	1.6 – 5	1)Heart rate responses to the Valsalva manoeuvre 2)Blood pressure response to sustained handgrip 3)Postural fall in blood pressure	Defined as either one or both responses to the Valsalva manoeuvre and sustained handgrip were abnormal, or if both were borderline. Patients with one borderline autonomic function test were designated as 'normal'.	NA	8/40 (20%) *only cardiovasc ular events leading to death mentioned	2/33 (6%) *only cardiovasc ular events leading to death mentioned	21/40 (53%)	5/33 (15%)

Cha et al,	8.9	1)E/I ratio	Each measurement	1) Recurrent attack	Early CAN:	13/42	NA	NA
2016 (31)			was scored as	of CVE, which was	22/48	(31%)		
		2)Responses to the	normal = 0 or	defined as CVE (MI,	(46%)			
		Valsalva manoeuvre	abnormal = 1	non-MI acute		*2 lower		
				coronary syndrome,	Definite	limb		
		3)HR response from	Defined as	heart failure, or	CAN:	amputation		
		lying to standing.		death attributable to	43/69	s included		
			1)Normal autonomic	CVE), stroke or limb	(62%)	in CVE but		
			function = 0	amputation from		does not		
				diabetic foot,	*2 lower	state if part		
			2)Early CAN = 1	according to World	limb	of CAN		
				Health Organization	amputation	population		
			3) Definite CAN >=	(WHO) criteria.	s included	or control		
			2		in CVE but			
					does not			
					state if part			
					of CAN			
					population			
					or control			

Astrup et al,	10.1 years	1)Expiration/Inspiration	Defined as	1) Cardiovascular	Abnormal	6/107 (6%)	Abnor	6/107
2006 (24)		(E/I) variation in heart		mortality and	HRV:		mal	(6%)
		rate.	1) Abnormal: HRV	morbidity.	85/216	*37 total	HRV:6	
			<=10 bpm	Cardiovascular	(39%)	Lower limb	2/216	*37 total
				morbidity was		amputation	(29%)	Lower
			2) Borderline: HRV	defined as a history	Borderline	/peripheral		limb
			11–14 bpm	of nonfatal	HRV: 6/65	bypass	Borderl	amputat
				myocardial	(9%)	procedures	ine	ion/peri
			3) Normal: HRV	infarction,		included in	HRV:7/	pheral
			>=15 bpm	percutaneous	*37 total	abnornal/b	65	bypass
				coronary	Lower limb	orderline/n	(11%)	procedu
				intervention,	amputation	ormal HRV		res
				coronary artery	/peripheral	group	*37	included
				bypass grafting,	bypass	however	total	in
				nonfatal stroke,	procedures	not stated	Lower	abnorna
				amputation as a	included in	how many	limb	l/borderl
				result of ischemia,	abnornal/b	in each	amput	ine/nor
				and vascular	orderline/n	groups	ation/p	mal
				surgery for	ormal HRV		eripher	HRV
				peripheral	group		al	group
				atherosclerotic	however		bypass	however
				disease.	not stated		proced	not
					how many		ures	stated
					in each		include	how
					groups		d in	many in
							abnorn	each
							al/bord	groups
							erline/	
							normal	
							HRV	
							group	
							howev	

							er not stated how many in each groups	
Lykke et al, 2008 (26)	10	1)Heart rate response to deep breathing *RR and QT intervals were also measured in all leads in three consecutive periods and a mean value for each was calculated.	NA	NA	Combined HRV and QTc (abnormal) : 14/34 (41%)	Combined HRV and QTc (normal): 1/100 (1%)	Combined HRV and QTc (abnormal): 15/34 (44%) Combined HRV and QTc (border line):4 4/257 (17%)	Combin ed HRV and QTc (normal) : 3/100 (3%)

Cohen et al,	5.3	1)E/I ratio	Defined as normal,	1) Death due to	26/405	14/467	NA	NA
2003 (23)			abnormal or	cardiovascular	(6%)	(3%)		
			borderline based on	events (sudden				
			age-related range	death, progressive	*All strokes	*All strokes		
			values (Smith,	heart failure, fatal				
			1982).	myocardial				
				infarction, fatal				
				arrhythmias,				
				cerebral vascular				
				accidents and				
				ruptured aortic				
				aneurysm)				
				2)Non-fatal				
				myocardial				
				infarction				
				3)Non-fatal cerebral				
				vascular accident				
				AVI I a and fallens				
				4)Heart failure				
				requiring hospital				
				admission				
				5 \ D				
				5)Pulmonary				
				infarction.				

Okada et al, 2010 (29)	4.7	1) Baroreceptor sensitivity (BRS) was assessed using the phenylephrine method. BRS was calculated as the slope of the linear regression line relating the systolic BP changes to the RR interval changes.	NA	1)Major adverse cardiovascular event (MACE), which included cardiovascular mortality, nonfatal MI, coronary revascularization by angioplasty or bypass, stroke and congestive heart failure requiring admission.	Depressed BRS: 15/85 (18%)	Preserved BRS: 4/99 (4%)	NA	NA
Navarro et al, 1996 (34)	1 – 11.5	1)Heart rate was monitored continuously during slow breathing at 6/min. The averaged difference between the highest heart rate with inspiration and the lowest rate with expiration during seven consecutive breathing cycles was called the AR6. 2)Valsalva ratio (Normal limits were established for the age group examined (AR6 >= 15.0; VR >= 1.43).	Defined as 1)CRR 0: both tests normal 2)CRR 1: one test abnormal 3)CRR 2: two tests abnormal	NA	NA	NA	CRR 1: 9/58 (16%) CRR 2: 101/35 9 (28%)	6/128 (5%)

Sampson et al, 1990 (21)	10 – 15	1)Initially at this time the heart rate variability on deep respiration at six cycles/min, was the only test in common use. The repeat tests of autonomic function were the heart rate variability on deep breathing at six cycles/min, the heart rate responses to the Valsalva manoeuvre (Valsalva ratio) and the heart rate and systolic blood pressure responses to standing as described elsewhere.	Group A: Early symptomatic autonomic neuropathy and an abnormal HRV (5.6 +/- 0.5) Group B: Abnormal HRV (7.6 +/-0.5) alone Group C: An asymptomatic control group with a normal HRV of 16-26 (20.8 +/- 0.5)	NA	Group A:4/49 (8%) Group B:0/24 (0%)	Group C:0/38 (0%)	Group A:18/4 9 (37%) Group B:2/24 (8%)	Group C:4/38 (11%)
Töyry et al, 1996 (14)	5, 10 *Stroke only assessed at 10 year follow-up	1) E/I ratio (Parasympathetic test at baseline and at 5-year examination) 2) Blood pressure response to standing (Sympathetic test at 5-year examination)	NA	1)First strokes	Parasymp athetic neuropathy : 6/19 (32%)	No Parasymp athetic neuropathy : 5/77 (6%)	NA	NA

Veglio et al, 2000 (38)	5	 Heart rate response to deep breathing Blood pressure response to standing Heart rate (resting) 	Defined as 2 or more abnormal results for the cardiovascular tests and heart rate	NA	NA	NA	10/75 (13%)	10/241 (4%)
Ziegler et al, 2008 (17)	9	1) Time domain measures including the standard deviation of R-R intervals (SDNN), coefficient of variation (CV) of R-R intervals, and the difference between the maximum and minimum R-R interval (max-min difference).	NA	NA	max-min R-R interval difference at the first quartile: 30/79 (38%)	max-min R-R interval difference at the 2nd- 4th quartile: 19/80 (24%)	NA	NA
Sawicki et al, 1996 (36)	9	RR variation between supine and standing position	Defined as RRsupine/RRstandi ng below 1.03	NA	16/26 (62%)	17/59 (29%)	NA	NA

Young et al, 2009 (27)	4.8	1) Heart rate response to standing	Defined as lowest quartile of heart rate response to standing test	1)Nonfatal myocardial infarction 2)Cardiac death (fatal myocardial infarction within 30 days, death due to heart failure, arrhythmia or sudden cardiac death)	17/245 (7%)	15/878 (2%)	NA	NA
Sawicki et al, 1998 (37)	15 – 16	RR variation between supine and standing position	Defined as RRsupine/RRstandi ng below 1.03	NA	NA	NA	58/84 (69%)	100/132 (76%)

Pop-Busui et	3.5	1)Resting heart rate	Defined as	1)Death from CVE	CAN1:	140/7563	CAN1:	291/756
al, 2010 (28)				included deaths	23/572	(2%)	38/572	3 (4%)
		2)SD of normally	1)CAN1: lowest	from myocardial	(4%)		(7%)	
		conducted R-R intervals	quartile of SDNN	infarction, heart		*Cardiovas		
		(SDNN).	(<7.815 ms) and the	failure, arrhythmia,	*Cardiovas	cular		
			highest quartile of	invasive	cular	mortality		
		*From simultaneous	QTI (>104.32%)	cardiovascular	mortality			
		lead recordings, QT		interventions,				
		intervals were	2)CAN2: lowest	cardiovascular				
		measured, and the QT	quartile of SDNN	causes after non-				
		index (QTI) was	and the highest	cardiovascular				
		calculated as observed/	quartiles of QTI and	surgery, stroke,				
		predicted QT duration	resting heart rate	unexpected death				
		where predicted value		presumed to be				
		was based on Bazett's	3)CAN3: lowest	from ischemic CVE				
		correction (QTc = QT/R	quartile of SDNN	occurring within 24				
		- R^1/2).	and the highest	h after the onset of				
			quartiles of QTI and	symptoms, and				
			heart rate, in the	death from other				
			presence of diabetic	vascular diseases.				
			peripheral					
			neuropathy.					
			*CAN1 was the					
			definition used for					
			our meta-analysis					

Rathmann et	8	1)Heart rate variation at	Defined as both	NA	2/35 (6%)	1/35 (3%)	8/35	1/35
al, 1993 (35)		rest	parameters below				(23%)	(3%)
			two standard		*death by	*death by		
		2)Heart rate variation at	deviations of an		myocardial	cardiac		
		deep breathing	age-corrected mean		infarction	arrhythmia		
			value of a non-		and stroke	-		
			diabetic control					
			group					
Ewing et al,	2.75	1)Valsalva manouvre	NA	NA	NA	NA	1 or	Both
1976 (16)							both	AFT
		2)BP response to					AFT	normal:
		sustained handgrip					abnor	0/17
							mal:	(0%)
		3)Postural drop in blood					10/20	
		pressure					(50%)	

Jermendy et	5	1)Valsalva ratio	Defined as	NA	NA	NA	Early	1/23
al, 1991 (33)		(Parasympathetic)	Normal: 0 score for				CAN: 2/13	(4%)
		2)30:15 ratio	parasympathetic				(15%)	
		(Parasympathetic)	tests				(1070)	
		(,					Definit	
		3)Postural drop in blood	Borderline: 1 score				e CAN:	
		pressure (sympathetic)	for parasympathetic				10/17	
			tests				(59%)	
		4)Beat to beat variation						
		(Parasympathetic)	Abnormal: 2 score					
			for parasympathetic tests					
			16515					
			*The patients were					
			than assigned an					
			autonomic function					
			score from 0 to 6					
			and 3 groups were					
			formed as patients					
			definitive (total					
			score 4-6) signs of					
			CAN					
			+01 '' '' '					

	functional tests			
	because no			
	sympathetic function			
	proved to be			
	abnormal.			

^{*} AFT, autonomic function test; CAN, cardiac autonomic neuropathy; CAN+, cardiac autonomic neuropathy positive; CAN-, cardiac autonomic neuropathy negative; CVE, cardiovascular disease events; CRR, cardiorespiratory reflex; HRV, heart rate variation; NA, information not available; QTc, corrected QT interval; SD, standard deviation.

ESM Table 5 Participant metabolic characteristic from all final selected articles

Study	Population HbA1c (IFC mmol/mol or DCCT %)	Population fasting glucose (default is mmol/L, apart from where stated mg/dL)	Population eGFR (ml/min/1.73 m2)	Population creatinine clearance (mL/min, apart from where stated mL/s or mmol/L)	Population albuminuria (mg/mmol, apart from where stated mg/24h, g/24h or mg/day)	Population lipids (mg/dL or mmol/L)
Ko et al, 2008 (25)	9.0+/-2.2%	NA	NA	NA	NA	NA
Pop-Busui et al, 2017 (15)	CAN-: 66.0+/-17.0 mmol/mol (8.2+/-1.6 %) CAN+: 74.0 +/- 20.0 mmol/mol (8.9 +/- 1.8 %)	NA	NA	NA	Sustained microalbuminuria (Sustained AER 30 mg/24h or more at two consecutive visits or ESRD defined as dialysis or renal transplantation): CAN-: n=114 CAN+: n=35 Macroalbuminuria (AER 300 mg/24h or more, or ESRD): Control: n=18 CAN: n=11	CAN-: Triglycerides 84.0+/-47.0 mg/dL, total cholesterol 181.0+/-33.0 mg/dL CAN+: Triglycerides 100.0+/-58.0 mg/dL, total cholesterol 190.0+/-42.0 mg/dL

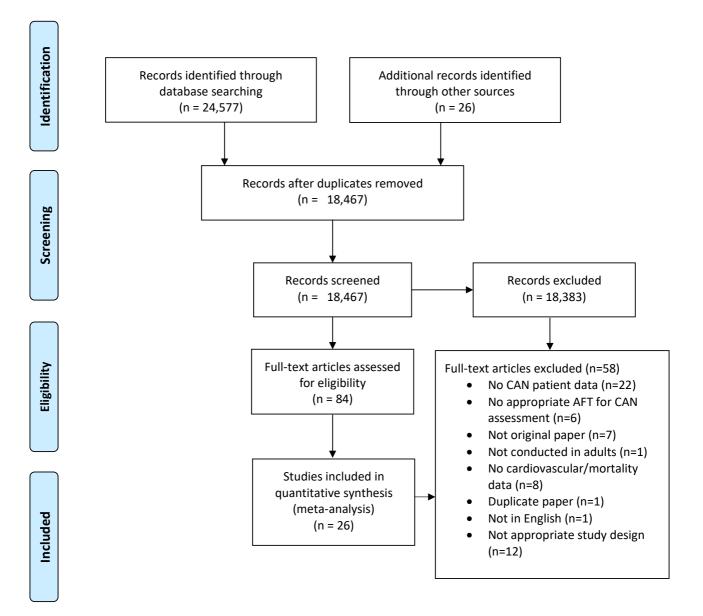
O'Brien et al, 1991 (22)	NA	NA	NA	NA	NA	CAN- cholesterol = 5.2 mmol/L
()						CAN+ cholesterol = 5.6 mmol/L
Cha et al, 2016 (31)	Whole cohort: 73.9+/-23.0 mmol/mol	Whole cohort: 9.87+/-4.51	Whole cohort: 83.1+/-18.0	NA	Whole cohort: 13.0 (7.0–54.9) mg/day	Whole cohort: HDL 1.07+/-0.30 mmol/L, LDL 2.85+/-0.85 mmol/L
Astrup et al, 2006 (24)	Diabetic nephropathy: 9.5 %+/-1.5 No diabetic nephropathy: 8.5%+/-1.1	NA	Diabetic nephropathy: 74.0+/-34.0 No diabetic nephropathy: NA	NA	Diabetic nephropathy: 796.0 (16–14,565) mg/24hr No diabetic nephropathy: 8.0 (1–30) mg/24hr	Diabetic nephropathy: HDL 1.46+/-0.5, LDL 3.54+/-1.1 mmol/L, Triglycerides 1.22 (0.3–9.8) mmol/L No diabetic nephropathy: HDL 1.56 +/- 0.4, LDL 2.82 +/- 0.9 mmol/L, Triglycerides 0.77
						Triglycerides 0.77 (0.28–3.1) mmol/L

Lykke et al, 2008 (26)	Normoalbuminuric group: 8.49+/- 1.09% Nephropathy group: 9.56+/-1.5%	NA	NA	NA	Normoalbuminuric group: Urinary albumin excretion 10.2 (range 1- 40) mg/24h Nephropathy: Urinary albumin excretion 1,609 (16-14545) mg/24h	Normoalbuminuric group: Cholesterol 4.76+/-0.98 mmol/L, HDL 1.56+/-0.51 mmol/L, Triglycerides 0.83 (range 0.28-3.05) mmol/L Nephropathy group: Cholesterol: 5.64+/-1.22, HDL: 1.46+/-0.54 mmol/L, Triglycerides 1.41 (range 0.31–9.87) mmol/L
Okada et al, 2010 (29)	Preserved BRS = 8.1+/-1.8% Depressed BRS = 8.3+/-1.9%	Preserved BRS: 147.0+/- 45.0 mg/dL Depressed BRS: 159.0+/- 53.0 mg/dL	NA	NA	NA	NA
Ziegler et al, 2008 (17)	NA	NA	NA	NA	NA	Whole cohort: total cholesterol 254.2+/-55.0 mg/dL, LDL: 161.5+/-45.1, HDL 49.3+/-15.4

Sawicki et al, 1996 (36)	Whole cohort: 8.9+/-2.0%	NA	NA	Whole cohort:1.08 (range 0.73- 1.36) mL/s *median	NA	Whole cohort: 6.9+/-1.7 mmol/L
Young et al, 2009 (27)	No screening group (n=562): 7.0+/-1.5% Screening (n=561): 7.2+/-1.6%	NA	NA	NA	NA	No screening (n=562): Triglycerides 168.0+/-101.0 mg/dL Screening (n=561): Triglycerides 172.0+/-118.0 mg/dL
Sawicki et al, 1998 (37)	Whole cohort: 8.9% (8.1–10.5) *median (interquartile range)	NA	NA	NA	NA	Whole cohort: total cholesterol 6.1 (interquartile range 5.2–6.9) mmol/L
Rathmann et al, 1993 (35)	CAN-: 10.5+/-1.4% CAN+: 11.6+/-1.0%	NA	NA	CAN-: 59.2 +/- 9.7 CAN+: 68.7 +/- 8.8	CAN- proteinuria: 0.06g/24h CAN+ proteinuria: 0.15g/24h	CAN- triglycerides: 1.56+/-0.59 mmol/L, cholesterol 5.60+/- 1.22 mmol/L CAN+ triglycerides: 2.41+/-1.35 mmol/L, cholesterol 6.11 +/- 1.27 mmol/L

Jermendy	Total diabetic	NA	NA	Total diabetic	NA	NA
et al, 1991	population: 7.1+/-			population:		
(33)	0.2%			87.0+/-4.0		
				mmol/L		

^{*} AER, albumin excretion rate; BRS, baroreflex sensitivity; CAN, cardiac autonomic neuropathy; CAN+, cardiac autonomic neuropathy positive; CAN-, cardiac autonomic neuropathy negative; eGFR, estimated glomerular filtration rate; ESRD, end stage renal disease; HDL, high density lipoprotein; LDL, low density lipoprotein; NA, information not available


^{*} Studies without reported metabolic characteristics: Chen et al, 2001 (32), Vujosevic et al, 2012 (30), Valensi et al, 2001 (20), Soedamah-Muthu et al, 2008 (13), Lee et al, 2003 (19), Ewing et al, 1980 (18), Cohen et al, 2003 (23), Navarro et al, 1996 (34), Sampson et al, 1990 (21), Töyry et al. 1996 (14), Veglio et al, 2000 (38), Pop-Busui et al, 2010 (28), Ewing et al, 1976 (16)

ESM Table 6 Summary of the overall risk of bias assessment

Study	Overall risk of bias						
Chen et al, 2001 (33)	Moderate						
Ko et al, 2008 (26)	Moderate						
Pop-Busui et al, 2017 (16)	Low						
Vujosevic et al, 2012 (31)	Moderate						
Valensi et al, 2001 (21)	Moderate						
Soedamah-Muthu et al, 2008 (14)	Moderate						
O'Brien et al, 1991 (23)	Serious						
Lee et al, 2003 (20)	Moderate						
Ewing et al, 1980 (19)	Low						
Cha et al, 2016 (32)	Moderate						
Astrup et al, 2006 (25)	Moderate						
Lykke et al, 2008 (27)	Moderate						
Cohen et al, 2003 (24)	Moderate						
Okada et al, 2010 (30)	Moderate						
Navarro et al, 1996 (35)	Serious						
Sampson et al, 1990 (22)	Moderate						
Töyry et al. 1996 (15)	Moderate						

Veglio et al, 2000 (39)	Moderate
Ziegler et al, 2008 (18)	Moderate
Sawicki et al, 1996 (37)	Moderate
Young et al, 2009 (28)	Moderate
Sawicki et al, 1998 (38)	Moderate
Pop-Busui et al, 2010 (29)	Moderate
Rathmann et al, 1993 (36)	Serious
Ewing et al, 1976 (17)	Moderate
Jermendy et al, 1991 (34)	Moderate

ESM Figure 1 Prisma flowchart demonstrating the article screening process

ESM Figure 2 A Forest plot including relative risk and 95% CI for subgroup analyses with cardiac autonomic neuropathy and cardiovascular disease events based on the aetiology of diabetes.

	CAN	N	Cont	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
1.1.1 Type 1 diabetes								
Sampson et al 1990	4	73	0	38	0.8%	4.74 [0.26, 85.85]	1990	
O'Brien et al 1991	8	84	7	422	5.1%	5.74 [2.14, 15.41]	1991	_
Astrup et al 2006	91	281	6	107	6.9%	5.78 [2.61, 12.80]	2006	_
Lykke et al 2008	14	34	1	100	1.6%	41.18 [5.62, 301.56]	2008	
Pop-Busui et al 2017 Subtotal (95% CI)	49	131 603	191	1262 1929	15.8% 30.2%	2.47 [1.91, 3.20] 5.54 [2.28, 13.45]	2017	•
Total events	166		205					
Heterogeneity: Tau ² = 1	0.63; Chi ⁱ	$^{2} = 16.$	77, df =	4 (P = 0)	.002); I ²	= 76%		
Test for overall effect: 2	Z = 3.78	(P = 0.	0002)					
1.1.2 Type 2 diabetes								
Töyry et al 1996	6	19	5	77	4.5%	4.86 [1.66, 14.25]	1996	_
Lee et al 2003	13	78	0	68	0.8%	23.58 [1.43, 389.41]	2003	
Cohen et al 2003	26	405	14	467	8.9%	2.14 [1.13, 4.04]	2003	
Ko et al 2008	97	627	34	499	13.6%	2.27 [1.56, 3.30]	2008	- - -
Young et al 2009	17	245	15	878	8.3%	4.06 [2.06, 8.01]	2009	
Pop-Busui et al 2010	23	572	140	7563	12.4%	2.17 [1.41, 3.35]	2010	- - -
Okada et al 2010	15	85	4	99	4.6%	4.37 [1.51, 12.66]	2010	
Vujosevic et al 2012	16	51	4	25	5.1%	1.96 [0.73, 5.25]	2012	+
Cha et al 2016	65	117	13	42	11.5%		2016	- -
Subtotal (95% CI)		2199		9718	69.8%	2.45 [1.93, 3.11]		▼
Total events	278		229					
Heterogeneity. Tau ² = 1				(P = 0.)	28); I* = 1	18%		
Test for overall effect: 2	2 = 7.36	(P < 0.	00001)					
Total (95% CI)		2802		11647	100.0%	2.96 [2.27, 3.84]		•
Total events	444	_	434					
Heterogeneity: Tau ² = 1				13 (P =	0.02); I ²	= 49%		0.005 0.1 1 10 200
Test for overall effect: 2								Higher in Control Higher in CAN
Test for subgroup diffe	rences: C	$hi^2 = 3$.03, df =	1 (P = 0)	0.08), I ² =	= 67.0%		ge. iii comogiici iii com

ESM Figure 3 A Forest plot including relative risk and 95% CI for subgroup analyses of studies with cardiac autonomic neuropathy and future cardiovascular disease events based on number of autonomic function test abnormalities (1 vs ≥2 abnormalities).

	CAI	N	Cont	rol		Risk Ratio		Risk Ratio
Study or Subgroup			Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
1.1.1 Minimum 1 posi	tive AFT							
Sampson et al 1990	4	73	0	38	0.8%	4.74 [0.26, 85.85]	1990	- · · · · · · · · · · · · · · · · · ·
Töyry et al 1996	6	19	5	77	4.3%	4.86 [1.66, 14.25]	1996	_
Cohen et al 2003	26	405	14	467	8.5%	2.14 [1.13, 4.04]	2003	
Astrup et al 2006	91	281	6	107	6.6%	5.78 [2.61, 12.80]	2006	
Ko et al 2008	97	627	34	499	13.0%	2.27 [1.56, 3.30]	2008	-
Young et al 2009	17	245	15	878	8.0%	4.06 [2.06, 8.01]	2009	
Okada et al 2010	15	85	4	99	4.4%	4.37 [1.51, 12.66]	2010	
Cha et al 2016	22	48	13	42	9.9%	1.48 [0.86, 2.56]	2016	 • - .
Subtotal (95% CI)		1783		2207	55.5%	2.88 [2.01, 4.12]		•
Total events	278		91					
Heterogeneity: Tau² = (0.11; Chi ^s	$^{2} = 13.$	19, df =	7 (P = 0)	$.07); I^2 =$	47%		
Test for overall effect: Z	2 = 5.79	(P < 0.	00001)					
1.1.2 Minimum 2 posi	tive AFT							
O'Brien et al 1991	8	84	7	422	4.9%			
Lykke et al 2008	14	34	1	100	1.5%			
Pop-Busui et al 2010	23	572	140	7563	11.9%			
Cha et al 2016	43	69	13	42	10.9%			-
Pop-Busui et al 2017	49	131	191	1262	15.2%		2017	🛨
Subtotal (95% CI)		890		9389	44.5%	2.84 [1.84, 4.38]		•
Total events	137	_	352					
Heterogeneity: Tau² = (4 (P = 0)	.02); I ² =	67%		
Test for overall effect: Z	2 = 4.72	(P < 0.	00001)					
Total (95% CI)		2673		11596	100.0%	2.81 [2.17, 3.63]		•
Total events	415		443					
Heterogeneity: Tau ² = (0.10; Chi ³	$^{2} = 25.$	43, df =	12 (P =	0.01); 12	= 53%		
Test for overall effect: Z				•				0.005 0.1 1 10 200
Test for subgroup differ				1 (P = 0)).96), I ² =	= 0%		Higher in Control Higher in CAN

ESM Figure 4 A Forest plot including relative risk and 95% CI for subgroup analyses of studies with cardiac autonomic neuropathy and all-cause mortality based on the aetiology of diabetes.

	CAI	N	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.3.1 Type 1 diabetes							
Astrup et al 2006	69	281	6	107	7.0%	4.38 [1.96, 9.78]	
Lykke et al 2008	59	291	3	100	5.8%	6.76 [2.17, 21.08]	
Navarro et al 1996	110	417	6	128	7.0%	5.63 [2.54, 12.49]	
O'Brien et al 1991	23	84	21	422	7.9%	5.50 [3.20, 9.47]	-
Pop-Busui et al 2017	4	131	13	1262	5.9%	2.96 [0.98, 8.96]	
Sampson et al 1990	20	73	4	38	6.3%	2.60 [0.96, 7.07]	
Sawicki et al 1996	16	26	17	59	8.0%	2.14 [1.29, 3.53]	-
Soedamah-Muthu et al 2008	68	941	34	1846	8.2%	3.92 [2.62, 5.88]	-
Veglio et al 2000	10	75	10	241	6.9%		
Subtotal (95% CI)		2319		4203	62.9%	3.76 [2.89, 4.91]	◆
Total events	379		114				
Heterogeneity: Tau ² = 0.04; CI	$hi^2 = 10.3$	39, df :	= 8 (P =	0.24); l²	= 23%		
Test for overall effect: $Z = 9.78$	3 (P < 0.0	00001)					
1.3.3 Type 3 dishetes							
1.3.2 Type 2 diabetes							
Chen et al 2001	106	371	29	241	8.3%		
Lee et al 2003	15	78	2	68	4.8%		
Pop-Busui et al 2010	38	572	291	7563	8.4%		
Sawicki et al 1998	58	84	100	132	8.7%		T
Vujosevic et al 2012	24	51 1156	5	25 8029	6.9% 37.1%	. , .	
Subtotal (95% CI)	244	1136	457	8029	37.1%	1.94 [1.03, 3.03]	
Total events	241	4.00 -10	427			104	
Heterogeneity: Tau ² = 0.41; Cl			= 4 (P <	0.00001	.); 1" = 92	:%	
Test for overall effect: Z = 2.05	> (P = U.)	J4J					
Total (95% CI)		3475		12232	100.0%	3.02 [1.89, 4.83]	•
Total events	620		541				
Heterogeneity: Tau ² = 0.65; CI		55 df		< 0.000	01): 12 =	91%	
Test for overall effect: $Z = 4.6$:		-	-		/, .		0.005 0.1 1 10 200
Test for subgroup differences:				0.06). I ²	= 72.2%	{	Higher in Control Higher in CAN
. 25 or babyroup amerences.	J	- v, ui	± v =	0.00,, 1	,	•	

ESM Figure 5 A Forest plot including relative risk and 95% CI for sensitivity analysis of studies with cardiac autonomic neuropathy and future cardiovascular events after removing three studies at high risk of bias.

	CAN Control			Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Ewing et al 1980	8	40	2	33	2.8%	3.30 [0.75, 14.49]	1980	
Sampson et al 1990	4	73	0	38	0.8%	4.74 [0.26, 85.85]	1990	- · · · · · · · · · · · · · · · · · ·
Töyry et al 1996	6	19	5	77	4.6%	4.86 [1.66, 14.25]	1996	_
Valensi et al 2001	22	33	3	42	4.4%	9.33 [3.06, 28.51]	2001	_
Cohen et al 2003	26	405	14	467	8.8%	2.14 [1.13, 4.04]	2003	
Lee et al 2003	13	78	0	68	0.9%	23.58 [1.43, 389.41]	2003	
Astrup et al 2006	91	281	6	107	6.9%	5.78 [2.61, 12.80]	2006	
Ko et al 2008	97	627	34	499	12.9%	2.27 [1.56, 3.30]	2008	-
Lykke et al 2008	14	34	1	100	1.7%	41.18 [5.62, 301.56]	2008	
Young et al 2009	17	245	15	878	8.2%	4.06 [2.06, 8.01]	2009	
Pop-Busui et al 2010	23	572	140	7563	11.9%	2.17 [1.41, 3.35]	2010	
Okada et al 2010	15	85	4	99	4.7%	4.37 [1.51, 12.66]	2010	
Vujosevic et al 2012	16	51	4	25	5.2%	1.96 [0.73, 5.25]	2012	+-
Cha et al 2016	65	117	13	42	11.1%	1.79 [1.11, 2.90]	2016	
Pop-Busui et al 2017	49	131	191	1262	14.8%	2.47 [1.91, 3.20]	2017	-
Total (95% CI)		2791		11300	100.0%	3.05 [2.32, 4.00]		•
Total events	466		432					
Heterogeneity: Tau ² = (0.11; Chi	$^{2} = 28.$	90, df =	14 (P =	0.01); 2 :	= 52%		0.005 0.1 1 10 200
Test for overall effect: Z	-		-	·	,			0.005 0.1 1 10 200 Higher in Control Higher in CAN

ESM Figure 6 A Forest plot including relative risk and 95% CI for sensitivity analysis of studies with cardiac autonomic neuropathy and all-cause mortality after removing three studies at high risk of bias.

	CAI	N	Control			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Astrup et al 2006	69	281	6	107	6.6%	4.38 [1.96, 9.78]	
Chen et al 2001	106	371	29	241	8.1%	2.37 [1.63, 3.46]	-
Ewing et al 1976	10	20	0	17	1.8%	18.00 [1.13, 286.20]	
Ewing et al 1980	21	40	5	33	6.4%	3.46 [1.47, 8.18]	
Jermendy et al 1991	12	30	1	23	3.0%	9.20 [1.29, 65.73]	
Lee et al 2003	15	78	2	68	4.3%		
Lykke et al 2008	59	291	3	100	5.3%	6.76 [2.17, 21.08]	
Pop-Busui et al 2010	38	572	291	7563	8.3%		
Pop-Busui et al 2017	4	131	13	1262	5.4%		-
Sampson et al 1990	20	73	4	38	5.8%	2.60 [0.96, 7.07]	-
Sawicki et al 1996	16	26	17	59	7.7%		-
Sawicki et al 1998	58	84	100	132	8.6%	0.91 [0.77, 1.08]	+
Soedamah-Muthu et al 2008	68	941	34	1846	8.1%	3.92 [2.62, 5.88]	-
Veglio et al 2000	10	75	10	241	6.5%	3.21 [1.39, 7.42]	
Vujosevic et al 2012	24	51	5	25	6.5%	2.35 [1.02, 5.43]	-
Ziegler et al 2008	30	79	19	80	7.8%	1.60 [0.99, 2.59]	-
Total (95% CI)		3143		11835	100.0%	2.81 [1.85, 4.27]	•
Total events	560		539				
Heterogeneity: Tau ² = 0.52; Cl	hi ² = 125	.74, df	= 15 (P)	< 0.000	$(0.1); I^2 =$	88%	0.005 0.1 1 10 200
Test for overall effect: Z = 4.89	5 (P < 0.0	00001)					Higher in Control Higher in CAN