Skip to main content
Log in

Prediction of sampling depth and photon pathlength in laser Doppler flowmetry

  • Transducers and Electrodes
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Monte Carlo simulation of photon migration in tissue was used to assess the sampling depth, measuring depth and photon pathlength in laser Doppler flowmetry. The median sampling depth and photon pathlength in skin, liver and brain tissue were calculated for different probe geometries. The shallowest median sampling depth found was 68 μm for a 120 μm diameter single fibre probe applied to a one-layered skin tissue model. By using separate transmitting and receiving fibres, the median sampling depth, which amounted to 146 μm for a 250 μm fibre centre separation, by be successively increased to 233 μm when the fibres' centres are separated by 700 μm. Total photon pathlength and thereby the number of multiple Doppler shifts increase with fibre separation, thus favouring the choice of a probe with a small fibre separation when linearity is more important than a large sampling depth. Owing mainly to differences in the tissue g-value and scattering coefficient, the median sampling depth is shallower for liver and deeper for brain, in comparison with skin tissue. For skin tissue, the influence on the sampling depth of a homogeneously distributed blood volume was found to be limited to about 1 per cent per percentage increase in tissue blood content, and may, therefore, be disregarded in most practical situations. Simulations show that the median measuring depth is strongly dependent on the perfusion profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn, H., Lindhagen, J., Nilsson, G. E., Salerud, E. G., Jodal, M. andLundgren, O. (1985) Evaluation of laser Doppler flowmetry in the assessment of intestinal blood flow in cat.Gastroenterol.,88, 951–957.

    Google Scholar 

  • Borgos, J. A. (1990) TSI's LDV blood flowmeter. InLaser Doppler blood flowmetry.Shepherd, P. andÖberg, P. -Å. (Eds.) Kluwer Academic Publishers, 73–92.

  • Braverman, I. M., Keh, A. andGoldminz, D. (1990) Correlation of laser Doppler wave patterns with underlying microvascular anatomy.J. Invest. Dermatol.,95, 283–286.

    Article  Google Scholar 

  • Chandrasekhar, S. (1960)Radiative transfer, Dover, New York.

    Google Scholar 

  • Crilly, R. J. (1987) The transport of infrared radiation in biological tissue. M.Sc. Thesis, University of Alberta.

  • Flock, S. T., Patterson, M. S., Wilson, B. C. andWyman, D. R. (1989a) Monte Carlo modeling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory.IEEE Trans.,BME-36, 1162–1168.

    Google Scholar 

  • Flock, S. T., Wilson, B. C. andPatterson, M. S. (1989b) Monte Carlo modeling of light propagation in highly scattering tissues—II: Comparison with measurements in phantoms. —Ibid.,,BME-36, 1169–1173.

    Google Scholar 

  • Henyey, L. G. andGreenstein, J. L. (1941) Diffuse radiation in the galaxy.Astrophys. J.,93, 70–83.

    Article  Google Scholar 

  • Hirata, K., Nagasaka, T. andNoda, Y. (1988) Partitional measurement of capillary and arteriovenous anastomotic blood flow in the human finger by laser-Doppler-flowmetry.Eur. J. Appl. Physiol.,57, 616–621.

    Article  Google Scholar 

  • Holloway, G. A. Jr. (1990) Medpacific's LDV blood flowmeter. InLaser Doppler blood flowmetry.Shepherd, P. andÖberg, P. -Å. (Eds.) Kluwer Academic Publishers, 47–56.

  • Ishimaru, A. (1978)Wave propagation and scattering in random media. Academic Press, New York, 175–190.

    Google Scholar 

  • Johansson, K., Ahn, H., Lindhagen, J. andLundgren, O. (1987) Tissue penetration and measuring depth of laser Doppler flowmetry in the gastrointestinal application.Scand. J. Gastroenterol.,22, 1081–1088.

    Google Scholar 

  • Johansson, K., Jakobsson, A., Lindahl, J., Lundgren, O. andNilsson, G. E. (1991) Influence of fibre diameter and probe geometry on the measuring depth of laser Doppler flowmetry in the gastrointestinal application.Int. J. Microcirc.: Clin. Exp.,10, 219–229.

    Google Scholar 

  • Johnson, J. M. (1990) The cutaneous circulation. InLaser Doppler blood flowmetry.Shepherd, P. andÖberg, P. -Å. (Eds.) Kluwer Academic Publishers, 121–139.

  • Kiel, J. W., Riedel, G. L., Diresta, G. R. andShepherd, A. P. (1985) Gastric mucosal blood flow measured by laser Doppler velocimetry.Am. J. Physiol.,249G, 539–545.

    Google Scholar 

  • Marchesini, R., Bertoni, A., Andreola, E., Molloni, E. andSichirollo, A. E. (1989) Extinction and absorption coefficients and scattering phase functions of human tissues in vitro.Appl. Opt.,28, 2318–2324.

    Article  Google Scholar 

  • Nilsson, G. E., Tenland, T. andÖberg, P. Å. (1980a) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy.IEEE Trans.,BME-27, 12–19.

    Google Scholar 

  • Nilsson, G. E., Tenland, T. andÖberg, P. Å. (1980b) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. —Ibid.,,BME-27, 597–604.

    Google Scholar 

  • Nilsson, G. E. (1984) Signal processor for laser Doppler tissue flowmeters.Med. & Biol. Eng. & Comput.,22, 343–348.

    Article  Google Scholar 

  • Nilsson, G. E., Jakobsson, A. andWårdell, K. (1989) Imaging of tissue blood flow by coherent light scattering. In Proc. IEEE 11th Ann. EMBS Conf., Seattle, Nov. 9–12.

  • Nilsson, G. E. (1990) Perimed's LDV flowmeter. InLaser Doppler blood flowmetry.Shepherd, P. andÖberg, P. -Å. (Eds.), Kluwer Academic Publishers, 57–73.

  • Reynolds, R., Johnson, C. andIshimaru, A. (1976) Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters.Appl. Opt.,15, 2059–2067.

    Article  Google Scholar 

  • Rothman, S. (1954)Physiology and Biochemistry of the Skin. The University of Chicago Press, Chicago & London, 61–64.

    Google Scholar 

  • Salerud, E. G. andNilsson, G. E. (1986) Integrating probe for tissue laser Doppler flowmeters.Med. & Biol. Eng. & Comput.,24, 415–419.

    Article  Google Scholar 

  • Splinter, R., Cheong, W. F., van Gemert, M. J. C. andWelch, A. J. (1989) In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm.Lasers in Surg. & Med.,9, 37–41.

    Google Scholar 

  • van Gemert, M. J. C., Jacoues, S. L., Sterenborg, H. J. C. M. andStar, W. M. (1989) Skin optics.IEEE Trans.,BME-36, 1146–1154.

    Google Scholar 

  • Welch, A. J., Yoon, G. andvan Gemert, M. J. C. (1987) Practical models for light distributions in laser-irradiated tissue.Lasers in Surg. & Med.,6, 488–493.

    Google Scholar 

  • Weiss, G. H., Nossal, R. andBonner, R. F. (1989) Statistics of penetration depth of photons re-emited from irradiated tissue.J. Mod. Opt.,36, 349–359.

    Google Scholar 

  • Wilson, B. C. andAdam, G. (1983) A Monte Carlo model for the absorption and flux distributions of light in tissue.Med. Phys.,10, 824–830.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobsson, A., Nilsson, G.E. Prediction of sampling depth and photon pathlength in laser Doppler flowmetry. Med. Biol. Eng. Comput. 31, 301–307 (1993). https://doi.org/10.1007/BF02458050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458050

Key words

Navigation