Skip to main content

Advertisement

Log in

Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome?

  • Review
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Epidemiological studies have provided the evidence for association between nephrolithiasis and a number of cardiovascular diseases including hypertension, diabetes, chronic kidney disease, metabolic syndrome. Many of the co-morbidities may not only lead to stone disease but also be triggered by it. Nephrolithiasis is a risk factor for development of hypertension and have higher prevalence of diabetes mellitus and some hypertensive and diabetic patients are at greater risk for stone formation. An analysis of the association between stone disease and other simultaneously appearing disorders, as well as factors involved in their pathogenesis, may provide an insight into stone formation and improved therapies for stone recurrence and prevention. It is our hypothesis that association between stone formation and development of co-morbidities is a result of certain common pathological features. Review of the recent literature indicates that production of reactive oxygen species (ROS) and development of oxidative stress (OS) may be such a common pathway. OS is a common feature of all cardiovascular diseases (CVD) including hypertension, diabetes mellitus, atherosclerosis and myocardial infarct. There is increasing evidence that ROS are also produced during idiopathic calcium oxalate (CaOx) nephrolithiasis. Both tissue culture and animal model studies demonstrate that ROS are produced during interaction between CaOx/calcium phosphate (CaP) crystals and renal epithelial cells. Clinical studies have also provided evidence for the development of oxidative stress in the kidneys of stone forming patients. Renal disorders which lead to OS appear to be a continuum. Stress produced by one disorder may trigger the other under the right circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pearle MS, Calhoun EA, Curhan GC (2005) Urologic diseases in America project: urolithiasis. J Urol 173:848

    Article  PubMed  Google Scholar 

  2. Stamatelou KK, Francis ME, Jones CA et al (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63:1817

    Article  PubMed  Google Scholar 

  3. Soucie JM, Coates RJ, McClellan W et al (1996) Relation between geographic variability in kidney stones prevalence and risk factors for stones. Am J Epidemiol 143:487

    PubMed  CAS  Google Scholar 

  4. Brikowski TH, Lotan Y, Pearle MS (2008) Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci USA 105:9841

    Article  PubMed  CAS  Google Scholar 

  5. Obligado SH, Goldfarb DS (2008) The association of nephrolithiasis with hypertension and obesity: a review. Am J Hypertens 21:257

    Article  PubMed  CAS  Google Scholar 

  6. Lieske JC, de la Vega LS, Gettman MT et al (2006) Diabetes mellitus and the risk of urinary tract stones: a population-based case–control study. Am J Kidney Dis 48:897

    Article  PubMed  Google Scholar 

  7. Jeong IG, Kang T, Bang JK et al (2011) Association between metabolic syndrome and the presence of kidney stones in a screened population. Am J Kidney Dis 58:383

    Article  PubMed  Google Scholar 

  8. Saucier NA, Sinha MK, Liang KV et al (2009) Risk factors for CKD in persons with kidney stones: a case-control study in Olmsted County, Minnesota. Am J Kidney Dis 55:61

    Article  PubMed  Google Scholar 

  9. Coe FL, Evan AP, Worcester EM et al (2010) Three pathways for human kidney stone formation. Urol Res 38:147

    Article  PubMed  Google Scholar 

  10. Johri N, Cooper B, Robertson W et al (2010) An update and practical guide to renal stone management. Nephron Clin Pract 116:c159

    Article  PubMed  Google Scholar 

  11. Tibblin G (1965) A population study of 50-year-old men. An analysis of the non-participation group. Acta Med Scand 178:453

    Article  PubMed  CAS  Google Scholar 

  12. Cirillo M, Laurenzi M (1988) Elevated blood pressure and positive history of kidney stones: results from a population-based study. J Hypertens Suppl 6:S485

    PubMed  CAS  Google Scholar 

  13. Cappuccio FP, Strazzullo P, Mancini M (1990) Kidney stones and hypertension: population based study of an independent clinical association. BMJ 300:1234

    Article  PubMed  CAS  Google Scholar 

  14. Kim YJ, Park MS, Kim WT et al (2010) Hypertension influences recurrent stone formation in nonobese stone formers. Urology 77:1059

    Article  PubMed  Google Scholar 

  15. Cappuccio FP, Siani A, Barba G et al (1999) A prospective study of hypertension and the incidence of kidney stones in men. J Hypertens 17:1017

    Article  PubMed  CAS  Google Scholar 

  16. Strazzullo P, Barba G, Vuotto P et al (2001) Past history of nephrolithiasis and incidence of hypertension in men: a reappraisal based on the results of the Olivetti Prospective Heart Study. Nephrol Dial Transplant 16:2232

    Article  PubMed  CAS  Google Scholar 

  17. Madore F, Stampfer MJ, Rimm EB et al (1998) Nephrolithiasis and risk of hypertension. Am J Hypertens 11:46

    Article  PubMed  CAS  Google Scholar 

  18. Madore F, Stampfer MJ, Willett WC et al (1998) Nephrolithiasis and risk of hypertension in women. Am J Kidney Dis 32:802

    Article  PubMed  CAS  Google Scholar 

  19. Borghi L, Meschi T, Guerra A et al (1999) Essential arterial hypertension and stone disease. Kidney Int 55:2397

    Article  PubMed  CAS  Google Scholar 

  20. Stoller ML, Low RK, Shami GS et al (1996) High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J Urol 156:1263

    Article  PubMed  CAS  Google Scholar 

  21. Wexler BC, McMurtry JP (1981) Kidney and bladder calculi in spontaneously hypertensive rats. Br J Exp Pathol 62:369

    PubMed  CAS  Google Scholar 

  22. Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80:129

    PubMed  CAS  Google Scholar 

  23. Domingos F, Serra A (2010) Nephrolithiasis is associated with an increased prevalence of cardiovascular disease. Nephrol Dial Transplant 26:864

    Article  PubMed  Google Scholar 

  24. Akoudad S, Szklo M, McAdams MA et al (2010) Correlates of kidney stone disease differ by race in a multi-ethnic middle-aged population: the ARIC study. Prev Med 51:416

    Article  PubMed  Google Scholar 

  25. Gillen DL, Coe FL, Worcester EM (2005) Nephrolithiasis and increased blood pressure among females with high body mass index. Am J Kidney Dis 46:263

    Article  PubMed  Google Scholar 

  26. Breslau NA, Pak CY (1982) Endocrine aspects of nephrolithiasis. Spec Top Endocrinol Metab 3:57

    PubMed  CAS  Google Scholar 

  27. Liu JG, Hu M, He XQ (1989) Risk factors for the formation of urinary calcium-containing stones in diabetics. Zhonghua Nei Ke Za Zhi 28:649

    PubMed  CAS  Google Scholar 

  28. Meydan N, Barutca S, Caliskan S et al (2003) Urinary stone disease in diabetes mellitus. Scand J Urol Nephrol 37:64

    Article  PubMed  Google Scholar 

  29. Taylor EN, Stampfer MJ, Curhan GC (2005) Diabetes mellitus and the risk of nephrolithiasis. Kidney Int 68:1230

    Article  PubMed  Google Scholar 

  30. Pak CY, Sakhaee K, Moe O et al (2003) Biochemical profile of stone-forming patients with diabetes mellitus. Urology 61:523

    Article  PubMed  Google Scholar 

  31. Daudon M, Traxer O, Conort P et al (2006) Type 2 diabetes increases the risk for uric acid stones. J Am Soc Nephrol 17:2026

    Article  PubMed  CAS  Google Scholar 

  32. Zimmerer T, Weiss C, Hammes HP et al (2009) Evaluation of urolithiasis: a link between stone formation and diabetes mellitus? Urol Int 82:350

    Article  PubMed  CAS  Google Scholar 

  33. Eisner BH, Porten SP, Bechis SK et al (2010) Diabetic kidney stone formers excrete more oxalate and have lower urine pH than nondiabetic stone formers. J Urol 183:2244

    Article  PubMed  CAS  Google Scholar 

  34. Hamano S, Nakatsu H, Suzuki N et al (2005) Kidney stone disease and risk factors for coronary heart disease. Int J Urol 12:859

    Article  PubMed  Google Scholar 

  35. Ljunghall S, Hedstrand H (1976) Renal stones and coronary heart disease. Acta Med Scand 199:481

    Article  PubMed  CAS  Google Scholar 

  36. Rule AD, Bergstralh EJ, Melton LJ 3rd et al (2009) Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol 4:804

    Article  PubMed  Google Scholar 

  37. Rule AD, Roger VL, Melton LJ 3rd et al (2010) Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol 21:1641

    Article  PubMed  Google Scholar 

  38. Reiner AP, Kahn A, Eisner BH et al (2011) Kidney stones and subclinical atherosclerosis in young adults: the CARDIA study. J Urol 185:920

    Article  PubMed  Google Scholar 

  39. Gupta M, Bolton DM, Gupta PN et al (1994) Improved renal function following aggressive treatment of urolithiasis and concurrent mild to moderate renal insufficiency. J Urol 152:1086

    PubMed  CAS  Google Scholar 

  40. Goel MC, Ahlawat R, Kumar M et al (1997) Chronic renal failure and nephrolithiasis in a solitary kidney: role of intervention. J Urol 157:1574

    Article  PubMed  CAS  Google Scholar 

  41. Gillen DL, Worcester EM, Coe FL (2005) Decreased renal function among adults with a history of nephrolithiasis: a study of NHANES III. Kidney Int 67:685

    Article  PubMed  Google Scholar 

  42. Vupputuri S, Soucie JM, McClellan W et al (2004) History of kidney stones as a possible risk factor for chronic kidney disease. Ann Epidemiol 14:222

    Article  PubMed  Google Scholar 

  43. Ingsathit A, Thakkinstian A, Chaiprasert A et al (2010) Prevalence and risk factors of chronic kidney disease in the Thai adult population: Thai SEEK study. Nephrol Dial Transplant 25:1567

    Article  PubMed  Google Scholar 

  44. Meneses JA, Lucas FM, Assuncao FC et al (2011) The impact of metaphylaxis of kidney stone disease in the renal function at long term in active kidney stone formers patients. Urol Res [Epub ahead of print]

  45. Dandona P, Aljada A, Chaudhuri A et al (2005) Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 111:1448

    Article  PubMed  Google Scholar 

  46. Curhan GC, Willett WC, Rimm EB et al (1998) Body size and risk of kidney stones. J Am Soc Nephrol 9:1645

    PubMed  CAS  Google Scholar 

  47. Taylor EN, Stampfer MJ, Curhan GC (2005) Obesity, weight gain, and the risk of kidney stones. JAMA 293:455

    Article  PubMed  CAS  Google Scholar 

  48. West B, Luke A, Durazo-Arvizu RA et al (2008) Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988–1994. Am J Kidney Dis 51:741

    Article  PubMed  Google Scholar 

  49. Ando R, Suzuki S, Nagaya T et al (2011) Impact of insulin resistance, insulin and adiponectin on kidney stones in the Japanese population. Int J Urol 18:131

    Article  PubMed  CAS  Google Scholar 

  50. Ferder L, Ferder MD, Inserra F (2010) The role of high-fructose corn syrup in metabolic syndrome and hypertension. Curr Hypertens Rep 12:105

    Article  PubMed  CAS  Google Scholar 

  51. Jalal DI, Smits G, Johnson RJ et al (2010) Increased fructose associates with elevated blood pressure. J Am Soc Nephrol 21:1543

    Article  PubMed  CAS  Google Scholar 

  52. Taylor EN, Curhan GC (2008) Fructose consumption and the risk of kidney stones. Kidney Int 73:207

    Article  PubMed  CAS  Google Scholar 

  53. Robertson WG (2003) A risk factor model of stone-formation. Front Biosci 8:s1330

    Article  PubMed  CAS  Google Scholar 

  54. Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847

    Article  PubMed  CAS  Google Scholar 

  55. Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450

    Article  PubMed  CAS  Google Scholar 

  56. Cameron MA, Maalouf NM, Adams-Huet B et al (2006) Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J Am Soc Nephrol 17:1422

    Article  PubMed  CAS  Google Scholar 

  57. Strazzullo P, Mancini M (1994) Hypertension, calcium metabolism, and nephrolithiasis. Am J Med Sci 307(Suppl 1):S102

    PubMed  Google Scholar 

  58. Timio F, Kerry SM, Anson KM et al (2003) Calcium urolithiasis, blood pressure and salt intake. Blood Press 12:122

    Article  PubMed  CAS  Google Scholar 

  59. Taylor EN, Curhan GC (2006) Body size and 24-hour urine composition. Am J Kidney Dis 48:905

    Article  PubMed  CAS  Google Scholar 

  60. Mente A, Honey RJ, McLaughlin JM et al (2006) High urinary calcium excretion and genetic susceptibility to hypertension and kidney stone disease. J Am Soc Nephrol 17:2567

    Article  PubMed  CAS  Google Scholar 

  61. Schleicher MM, Reis MC, Costa SS et al (2009) Patients with nephrolithiasis and blood hypertension have higher calciuria than those with isolated nephrolithiasis or hypertension? Minerva Urol Nefrol 61:9

    PubMed  CAS  Google Scholar 

  62. Eisner BH, Porten SP, Bechis SK et al (2010) Hypertension is associated with increased urinary calcium excretion in patients with nephrolithiasis. J Urol 183:576

    Article  PubMed  CAS  Google Scholar 

  63. Taylor EN, Mount DB, Forman JP et al (2006) Association of prevalent hypertension with 24-hour urinary excretion of calcium, citrate, and other factors. Am J Kidney Dis 47:780

    Article  PubMed  CAS  Google Scholar 

  64. Maalouf NM, Cameron MA, Moe OW et al (2010) Metabolic basis for low urine pH in type 2 diabetes. Clin J Am Soc Nephrol 5:1277

    Article  PubMed  CAS  Google Scholar 

  65. Randall A (1937) The origin and growth of renal calculi. Ann Surg 105:1009

    Article  PubMed  CAS  Google Scholar 

  66. Carpentier X, Bazin D, Jungers P et al (2010) The pathogenesis of Randall’s plaque: a papilla cartography of Ca compounds through an ex vivo investigation based on XANES spectroscopy. J Synchrotron Radiat 17:374

    Article  PubMed  CAS  Google Scholar 

  67. Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23:194

    Article  PubMed  CAS  Google Scholar 

  68. Evan AP, Lingeman JE, Coe FL et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607

    PubMed  CAS  Google Scholar 

  69. Weller RO, Nester B, Cooke SAR (1971) Calcification in the human renal papilla: an electron microscope study. J Pathol 107:211

    Article  Google Scholar 

  70. Stoller ML, Meng MV, Abrahams HM et al (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171:1920

    Article  PubMed  Google Scholar 

  71. Miller NL, Gillen DL, Williams JC Jr et al (2009) A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall’s plaque. BJU Int 103:966

    Article  PubMed  CAS  Google Scholar 

  72. Coe FL, Evan AP, Lingeman JE et al (2010) Plaque and deposits in nine human stone diseases. Urol Res 38:239

    Article  PubMed  Google Scholar 

  73. Evan AP, Lingeman JE, Coe FL et al (2008) Role of interstitial apatite plaque in the pathogenesis of the common calcium oxalate stone. Semin Nephrol 28:111

    Article  PubMed  CAS  Google Scholar 

  74. Evan AP (2009) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25:831

    Article  PubMed  Google Scholar 

  75. Evan AP, Coe FL, Rittling SR et al (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145

    Article  PubMed  CAS  Google Scholar 

  76. Evan AP, Bledsoe S, Worcester EM et al (2007) Renal inter-alpha-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int 72:1503

    Article  PubMed  CAS  Google Scholar 

  77. Evan A, Lingeman J, Coe FL et al (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313

    Article  PubMed  CAS  Google Scholar 

  78. Haggit RC, Pitcock JA (1971) Renal medullary calcification: a light and electron microscopic study. J Urol 106:342

    Google Scholar 

  79. Cooke SAR (1970) The site of calcification in the human renal papilla. Br J Surg 57:890

    Article  PubMed  CAS  Google Scholar 

  80. Carpentier X, Bazin D, Combes C et al (2011) High Zn content of Randall’s plaque: a mu-X-ray fluorescence investigation. J Trace Elem Med Biol 25:160

    Article  PubMed  CAS  Google Scholar 

  81. Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 8:75

    Article  PubMed  CAS  Google Scholar 

  82. Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108:4551

    Article  PubMed  CAS  Google Scholar 

  83. Murshed M, McKee MD (2010) Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr Opin Nephrol Hypertens 19:359

    Article  PubMed  CAS  Google Scholar 

  84. Baggio B, Gambaro G, Ossi E et al (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129:1161

    PubMed  CAS  Google Scholar 

  85. Huang HS, Ma MC, Chen CF et al (2003) Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 62:1123

    Article  PubMed  Google Scholar 

  86. Tungsanga K, Sriboonlue P, Futrakul P et al (2005) Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res 33:65

    Article  PubMed  CAS  Google Scholar 

  87. Boonla C, Wunsuwan R, Tungsanga K et al (2007) Urinary 8-hydroxydeoxyguanosine is elevated in patients with nephrolithiasis. Urol Res 35:185

    Article  PubMed  CAS  Google Scholar 

  88. Tsao KC, Wu TL, Chang PY et al (2007) Multiple risk markers for atherogenesis associated with chronic inflammation are detectable in patients with renal stones. J Clin Lab Anal 21:426

    Article  PubMed  Google Scholar 

  89. Mushtaq S, Siddiqui AA, Naqvi ZA et al (2007) Identification of myeloperoxidase, alpha-defensin and calgranulin in calcium oxalate renal stones. Clin Chim Acta 384:41

    Article  PubMed  CAS  Google Scholar 

  90. Taylor EN, Fung TT, Curhan GC (2009) DASH-style diet associates with reduced risk for kidney stones. J Am Soc Nephrol 20:2253

    Article  PubMed  CAS  Google Scholar 

  91. Evan AP, Coe FL, Lingeman JE et al (2006) Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int 69:2227

    Article  PubMed  CAS  Google Scholar 

  92. Evan AP, Lingeman J, Coe F et al (2007) Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int 71:795

    Article  PubMed  CAS  Google Scholar 

  93. Evan AP, Lingeman JE, Coe FL et al (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67:576

    Article  PubMed  CAS  Google Scholar 

  94. Evan AP, Lingeman JE, Worcester EM et al (2010) Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int 78:310

    Article  PubMed  CAS  Google Scholar 

  95. Evan AP, Coe FL, Gillen D et al (2008) Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones. Anat Rec (Hoboken) 291:325

    Article  Google Scholar 

  96. Evan AE, Lingeman JE, Coe FL et al (2008) Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int 74:223

    Article  PubMed  CAS  Google Scholar 

  97. Escobar C, Byer KJ, Khaskheli H et al (2008) Apatite induced renal epithelial injury: insight into the pathogenesis of kidney stones. J Urol 180:379

    Article  PubMed  CAS  Google Scholar 

  98. Aihara K, Byer KJ, Khan SR (2003) Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int 64:1283

    Article  PubMed  CAS  Google Scholar 

  99. Umekawa T, Byer K, Uemura H et al (2005) Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. Nephrol Dial Transplant 20:870

    Article  PubMed  CAS  Google Scholar 

  100. Umekawa T, Chegini N, Khan SR (2003) Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals. Nephrol Dial Transplant 18:664

    Article  PubMed  CAS  Google Scholar 

  101. Giachelli CM (2005) Inducers and inhibitors of biomineralization: lessons from pathological calcification. Orthod Craniofac Res 8:229

    Article  PubMed  CAS  Google Scholar 

  102. Thamilselvan S, Hackett RL, Khan SR (1997) Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 157:1059

    Article  PubMed  CAS  Google Scholar 

  103. Thamilselvan S, Hackett RL, Khan SR (1999) Cells of proximal and distal tubular origin respond differently to challenges of oxalate and calcium oxalate crystals. J Am Soc Nephrol 10(Suppl 14):S452

    PubMed  CAS  Google Scholar 

  104. Khan SR (2005) Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res 33:349

    Article  PubMed  CAS  Google Scholar 

  105. Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int 70:914

    Article  PubMed  CAS  Google Scholar 

  106. Khan SR (1995) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23:71

    Article  PubMed  CAS  Google Scholar 

  107. Sumitra K, Pragasam V, Sakthivel R et al (2005) Beneficial effect of vitamin E supplementation on the biochemical and kinetic properties of Tamm–Horsfall glycoprotein in hypertensive and hyperoxaluric patients. Nephrol Dial Transplant 20:1407

    Article  PubMed  CAS  Google Scholar 

  108. Huang HS, Chen J, Chen CF et al (2006) Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors. Kidney Int 70:699

    Article  PubMed  CAS  Google Scholar 

  109. Thamilselvan S, Byer KJ, Hackett RL et al (2000) Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol 164:224

    Article  PubMed  CAS  Google Scholar 

  110. Thamilselvan S, Khan SR, Menon M (2003) Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 31:3

    PubMed  CAS  Google Scholar 

  111. Khand FD, Gordge MP, Robertson WG et al (2002) Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells. Free Radic Biol Med 32:1339

    Article  PubMed  CAS  Google Scholar 

  112. Meimaridou E, Jacobson J, Seddon AM et al (2005) Crystal and microparticle effects on MDCK cell superoxide production: oxalate-specific mitochondrial membrane potential changes. Free Radic Biol Med 38:1553

    Article  PubMed  CAS  Google Scholar 

  113. Cao LC, Honeyman TW, Cooney R et al (2004) Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int 66:1890

    Article  PubMed  CAS  Google Scholar 

  114. Khan SR, Khan A, Byer KJ (2011) Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol Dial Transplant 26:1778

    Article  PubMed  CAS  Google Scholar 

  115. Li N, Yi FX, Spurrier JL et al (2002) Production of superoxide through NADH oxidase in thick ascending limb of Henle’s loop in rat kidney. Am J Physiol Renal Physiol 282:F1111

    PubMed  CAS  Google Scholar 

  116. Geiszt M, Kopp JB, Varnai P et al (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97:8010

    Article  PubMed  CAS  Google Scholar 

  117. Hanna IR, Taniyama Y, Szocs K et al (2002) NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxid Redox Signal 4:899

    Article  PubMed  CAS  Google Scholar 

  118. Wilcox CS, Welch WJ (2001) Oxidative stress: cause or consequence of hypertension. Exp Biol Med (Maywood) 226:619

    CAS  Google Scholar 

  119. Shiose A, Kuroda J, Tsuruya K et al (2001) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276:1417

    Article  PubMed  CAS  Google Scholar 

  120. Thamilselvan V, Menon M, Thamilselvan S (2009) Oxalate-induced activation of PKC-alpha and -delta regulates NADPH oxidase-mediated oxidative injury in renal tubular epithelial cells. Am J Physiol Renal Physiol 297:F1399

    Article  PubMed  CAS  Google Scholar 

  121. Thamilselvan V, Menon M, Thamilselvan S (2011) Selective Rac1 inhibition protects renal tubular epithelial cells from oxalate-induced NADPH oxidase-mediated oxidative cell injury. Urol Res [Epub ahead of print]

  122. Zuo J, Khan A, Glenton PA et al (2011) Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-l-proline-induced hyperoxaluria in the male Sprague-Dawley rats. Nephrol Dial Transplant 26:1785

    Article  PubMed  CAS  Google Scholar 

  123. Wassmann S, Laufs U, Muller K et al (2002) Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 22:300

    Article  PubMed  CAS  Google Scholar 

  124. Tsujihata M, Momohara C, Yoshioka I et al (2008) Atorvastatin inhibits renal crystal retention in a rat stone forming model. J Urol 180:2212

    Article  PubMed  CAS  Google Scholar 

  125. Toblli JE, Ferder L, Stella I et al (2001) Protective role of enalapril for chronic tubulointerstitial lesions of hyperoxaluria. J Urol 166:275

    Article  PubMed  CAS  Google Scholar 

  126. Toblli JE, Ferder L, Stella I et al (2002) Effects of angiotensin II subtype 1 receptor blockade by losartan on tubulointerstitial lesions caused by hyperoxaluria. J Urol 168:1550

    Article  PubMed  CAS  Google Scholar 

  127. Umekawa T, Hatanaka Y, Kurita T et al (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 15:635

    Article  PubMed  CAS  Google Scholar 

  128. Khan SR, Shevock PN, Hackett RL (1992) Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J Urol 147:226

    PubMed  CAS  Google Scholar 

  129. de Bruijn WC, Boeve ER, van Run PR et al (1995) Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc 9:103

    PubMed  Google Scholar 

  130. de Water R, Noordermeer C, van der Kwast TH et al (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761

    Article  PubMed  Google Scholar 

  131. McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913

    Article  PubMed  CAS  Google Scholar 

  132. Umekawa T, Tsuji H, Uemura H et al (2009) Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant protein-1 in renal epithelial cells exposed to calcium oxalate crystals. BJU Int 104:115

    Article  PubMed  CAS  Google Scholar 

  133. Rashed T, Menon M, Thamilselvan S (2004) Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. Am J Nephrol 24:557

    Article  PubMed  CAS  Google Scholar 

  134. Koul HK, Menon M, Chaturvedi LS et al (2002) COM crystals activate the p38 mitogen-activated protein kinase signal transduction pathway in renal epithelial cells. J Biol Chem 277:36845

    Article  PubMed  CAS  Google Scholar 

  135. Chaturvedi LS, Koul S, Sekhon A et al (2002) Oxalate selectively activates p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signal transduction pathways in renal epithelial cells. J Biol Chem 277:13321

    Article  PubMed  CAS  Google Scholar 

  136. Toblli JE, Cao G, Casas G et al (2005) NF-kappaB and chemokine-cytokine expression in renal tubulointerstitium in experimental hyperoxaluria. Role of the renin–angiotensin system. Urol Res 33:358

    Article  PubMed  CAS  Google Scholar 

  137. Jonassen JA, Cao LC, Honeyman T et al (2003) Mechanisms mediating oxalate-induced alterations in renal cell functions. Crit Rev Eukaryot Gene Expr 13:55

    Article  PubMed  CAS  Google Scholar 

  138. Umekawa T, Chegini N, Khan SR (2002) Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney Int 61:105

    Article  PubMed  CAS  Google Scholar 

  139. Umekawa T, Iguchi M, Uemura H et al (2006) Oxalate ions and calcium oxalate crystal-induced up-regulation of osteopontin and monocyte chemoattractant protein-1 in renal fibroblasts. BJU Int 98:656

    Article  PubMed  CAS  Google Scholar 

  140. Iida S, Peck AB, Byer KJ et al (1999) Expression of bikunin mRNA in renal epithelial cells after oxalate exposure. J Urol 162:1480

    Article  PubMed  CAS  Google Scholar 

  141. Iida S, Peck AB, Johnson-Tardieu J et al (1999) Temporal changes in mRNA expression for bikunin in the kidneys of rats during calcium oxalate nephrolithiasis. J Am Soc Nephrol 10:986

    PubMed  CAS  Google Scholar 

  142. Grewal JS, Tsai JY, Khan SR (2005) Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochem J 387:609

    Article  PubMed  CAS  Google Scholar 

  143. Moriyama MT, Glenton PA, Khan SR (2001) Expression of inter-alpha inhibitor related proteins in kidneys and urine of hyperoxaluric rats. J Urol 165:1687

    Article  PubMed  CAS  Google Scholar 

  144. Suzuki K, Tanaka T, Miyazawa K et al (1999) Gene expression of prothrombin in human and rat kidneys: basic and clinical approach. J Am Soc Nephrol 10(Suppl 14):S408

    PubMed  CAS  Google Scholar 

  145. Lieske JC, Spargo BH, Toback FG (1992) Endocytosis of calcium oxalate crystals and proliferation of renal tubular epithelial cells in a patient with type 1 primary hyperoxaluria. J Urol 148:1517

    PubMed  CAS  Google Scholar 

  146. Mandell I, Krauss E, Millan JC (1980) Oxalate-induced acute renal failure in Crohn’s disease. Am J Med 69:628

    Article  PubMed  CAS  Google Scholar 

  147. Wharton R, D’Agati V, Magun AM et al (1990) Acute deterioration of renal function associated with enteric hyperoxaluria. Clin Nephrol 34:116

    PubMed  CAS  Google Scholar 

  148. Whitworth JA (2003) 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens 21:1983

    Article  PubMed  Google Scholar 

  149. Moritz AR, Oldt MR (1937) Arteriolar sclerosis in hypertensive and non-hypertensive individuals. Am J Pathol 13:679

    PubMed  CAS  Google Scholar 

  150. Kimmelstiel P, Wilson C (1936) Benign and malignant hypertension and nephrosclerosis: a clinical and pathological study. Am J Pathol 12:45

    PubMed  CAS  Google Scholar 

  151. Johnson RJ, Feig DI, Nakagawa T et al (2008) Pathogenesis of essential hypertension: historical paradigms and modern insights. J Hypertens 26:381

    Article  PubMed  CAS  Google Scholar 

  152. Montecucco F, Pende A, Quercioli A et al (2010) Inflammation in the pathophysiology of essential hypertension. J Nephrol 24:23

    Article  Google Scholar 

  153. Rodriguez-Iturbe B, Franco M, Tapia E et al (2011) Renal inflammation, autoimmunity and salt-sensitive hypertension. Clin Exp Pharmacol Physiol [Epub ahead of print]

  154. Rodriguez-Iturbe B, Vaziri ND, Johnson RJ (2008) Inflammation, angiotensin II, and hypertension. Hypertension 52:e135 (author reply e136)

  155. Rodriguez-Iturbe B, Vaziri ND, Herrera-Acosta J et al (2004) Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. Am J Physiol Renal Physiol 286:F606

    Article  PubMed  CAS  Google Scholar 

  156. Stefanadi E, Tousoulis D, Androulakis ES et al (2010) Inflammatory markers in essential hypertension: potential clinical implications. Curr Vasc Pharmacol 8:509

    Article  PubMed  CAS  Google Scholar 

  157. Briones AM, Touyz RM (2010) Oxidative stress and hypertension: current concepts. Curr Hypertens Rep 12:135

    Article  PubMed  CAS  Google Scholar 

  158. Nistala R, Whaley-Connell A, Sowers JR (2008) Redox control of renal function and hypertension. Antioxid Redox Signal 10:2047

    Article  PubMed  CAS  Google Scholar 

  159. Bautista LE, Lopez-Jaramillo P, Vera LM et al (2001) Is C-reactive protein an independent risk factor for essential hypertension? J Hypertens 19:857

    Article  PubMed  CAS  Google Scholar 

  160. Chrysohoou C, Panagiotakos DB, Pitsavos C et al (2004) Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J Am Coll Cardiol 44:152

    Article  PubMed  Google Scholar 

  161. Sesso HD, Buring JE, Rifai N et al (2003) C-reactive protein and the risk of developing hypertension. JAMA 290:2945

    Article  PubMed  CAS  Google Scholar 

  162. Kurata M, Okura T, Watanabe S et al (2006) Osteopontin and carotid atherosclerosis in patients with essential hypertension. Clin Sci (Lond) 111:319

    Article  CAS  Google Scholar 

  163. Stumpf C, John S, Jukic J et al (2005) Enhanced levels of platelet P-selectin and circulating cytokines in young patients with mild arterial hypertension. J Hypertens 23:995

    Article  PubMed  CAS  Google Scholar 

  164. Wilcox CS (2002) Reactive oxygen species: roles in blood pressure and kidney function. Curr Hypertens Rep 4:160

    Article  PubMed  Google Scholar 

  165. O’Connor PM, Cowley AW Jr (2010) Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide. Curr Hypertens Rep 12:86

    Article  PubMed  CAS  Google Scholar 

  166. Ignarro LJ, Napoli C, Loscalzo J (2002) Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview. Circ Res 90:21

    Article  PubMed  CAS  Google Scholar 

  167. Armas-Padilla MC, Armas-Hernandez MJ, Sosa-Canache B et al (2007) Nitric oxide and malondialdehyde in human hypertension. Am J Ther 14:172

    Article  PubMed  Google Scholar 

  168. Rodriguez-Iturbe B, Romero F, Johnson RJ (2007) Pathophysiological mechanisms of salt-dependent hypertension. Am J Kidney Dis 50:655

    Article  PubMed  Google Scholar 

  169. Chabrashvili T, Tojo A, Onozato ML et al (2002) Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 39:269

    Article  PubMed  CAS  Google Scholar 

  170. Schnackenberg CG, Welch WJ, Wilcox CS (1998) Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension 32:59

    PubMed  CAS  Google Scholar 

  171. Zalba G, Beaumont FJ, San Jose G et al (2000) Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 35:1055

    PubMed  CAS  Google Scholar 

  172. Grote K, Ortmann M, Salguero G et al (2006) Critical role for p47phox in renin–angiotensin system activation and blood pressure regulation. Cardiovasc Res 71:596

    Article  PubMed  CAS  Google Scholar 

  173. Landmesser U, Cai H, Dikalov S et al (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511

    Article  PubMed  CAS  Google Scholar 

  174. Zhou MS, Hernandez Schulman I, Pagano PJ et al (2006) Reduced NAD(P)H oxidase in low renin hypertension: link among angiotensin II, atherogenesis, and blood pressure. Hypertension 47:81

    Article  PubMed  CAS  Google Scholar 

  175. Tian N, Moore RS, Phillips WE et al (2008) NADPH oxidase contributes to renal damage and dysfunction in Dahl salt-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol 295:R1858

    Article  PubMed  CAS  Google Scholar 

  176. Taylor NE, Glocka P, Liang M et al (2006) NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats. Hypertension 47:692

    Article  PubMed  CAS  Google Scholar 

  177. Kanwar YS, Sun L, Xie P et al (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395

    Article  PubMed  CAS  Google Scholar 

  178. Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M et al (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7:327

    Article  PubMed  CAS  Google Scholar 

  179. Steckelings UM, Rompe F, Kaschina E et al (2009) The evolving story of the RAAS in hypertension, diabetes and CV disease: moving from macrovascular to microvascular targets. Fundam Clin Pharmacol 23:693

    Article  PubMed  CAS  Google Scholar 

  180. Matheson A, Willcox MD, Flanagan J et al (2010) Urinary biomarkers involved in type 2 diabetes: a review. Diabetes Metab Res Rev 26:150

    Article  PubMed  CAS  Google Scholar 

  181. Okonogi H, Nishimura M, Utsunomiya Y et al (2001) Urinary type IV collagen excretion reflects renal morphological alterations and type IV collagen expression in patients with type 2 diabetes mellitus. Clin Nephrol 55:357

    PubMed  CAS  Google Scholar 

  182. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058

    Article  PubMed  CAS  Google Scholar 

  183. Kakehi T, Yabe-Nishimura C (2008) NOX enzymes and diabetic complications. Semin Immunopathol 30:301

    Article  PubMed  CAS  Google Scholar 

  184. Chung SS, Ho EC, Lam KS et al (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14:S233

    Article  PubMed  CAS  Google Scholar 

  185. Asaba K, Tojo A, Onozato ML et al (2005) Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 67:1890

    Article  PubMed  CAS  Google Scholar 

  186. Etoh T, Inoguchi T, Kakimoto M et al (2003) Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibility by interventive insulin treatment. Diabetologia 46:1428

    Article  PubMed  CAS  Google Scholar 

  187. Manea A (2010) NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology. Cell Tissue Res 342:325

    Article  PubMed  CAS  Google Scholar 

  188. Brown BG, Zhao XQ, Chait A et al (2001) Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 345:1583

    Article  PubMed  CAS  Google Scholar 

  189. Touyz RM (2003) Reactive oxygen species in vascular biology: role in arterial hypertension. Expert Rev Cardiovasc Ther 1:91

    Article  PubMed  CAS  Google Scholar 

  190. Manea A, Manea SA, Gafencu AV et al (2007) Regulation of NADPH oxidase subunit p22(phox) by NF-κB in human aortic smooth muscle cells. Arch Physiol Biochem 113:163

    Article  PubMed  CAS  Google Scholar 

  191. Stefanadi E, Tousoulis D, Papageorgiou N et al (2010) Inflammatory biomarkers predicting events in atherosclerosis. Curr Med Chem 17:1690

    Article  PubMed  CAS  Google Scholar 

  192. De Rosa S, Cirillo P, Paglia A et al (2010) Reactive oxygen species and antioxidants in the pathophysiology of cardiovascular disease: does the actual knowledge justify a clinical approach? Curr Vasc Pharmacol 8:259

    Article  PubMed  CAS  Google Scholar 

  193. Rivera J, Sobey CG, Walduck AK et al (2010) Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep 15:50

    Article  PubMed  CAS  Google Scholar 

  194. Drummond GR, Selemidis S, Griendling KK et al (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453

    Article  PubMed  CAS  Google Scholar 

  195. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87

    Article  PubMed  CAS  Google Scholar 

  196. Kern PA, Ranganathan S, Li C et al (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280:E745

    PubMed  CAS  Google Scholar 

  197. Pradhan AD, Manson JE, Rifai N et al (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327

    Article  PubMed  CAS  Google Scholar 

  198. Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752

    PubMed  CAS  Google Scholar 

  199. Soares AF, Guichardant M, Cozzone D et al (2005) Effects of oxidative stress on adiponectin secretion and lactate production in 3T3–L1 adipocytes. Free Radic Biol Med 38:882

    Article  PubMed  CAS  Google Scholar 

  200. Silver AE, Beske SD, Christou DD et al (2007) Overweight and obese humans demonstrate increased vascular endothelial NAD(P)H oxidase-p47(phox) expression and evidence of endothelial oxidative stress. Circulation 115:627

    Article  PubMed  CAS  Google Scholar 

  201. Otani H (2011) Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antioxid Redox Signal 15:1911

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed R. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.R. Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome?. Urol Res 40, 95–112 (2012). https://doi.org/10.1007/s00240-011-0448-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-011-0448-9

Keywords

Navigation