Skip to main content
Log in

Genetic variants associated with VLDL, LDL and HDL particle size differ with race/ethnicity

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Specific constellations of lipoprotein particle features, reflected as differences in mean lipoprotein particle diameters, are associated with risk of insulin resistance (IR) and cardiovascular disease (CVD). The associations of lipid profiles with disease risk differ by race/ethnicity, the reason for this is not clear. We aimed to examine whether there were additional genetic differences between racial/ethnic groups on lipoprotein profile. Genotypes were assessed using the Affymetrix 6.0 array in 817 related Caucasian participants of the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). Association analysis was conducted on fasting mean particle diameters using linear models, adjusted for age, sex and study center as fixed effects, and pedigree as a random effect. Replication of associations reaching P < 1.97 × 10−05 (the level at which we achieved at least 80 % power to replicate SNP-phenotype associations) was conducted in the Caucasian population of the Multi-Ethnic Study of Atherosclerosis (MESA; N = 2,430). Variants which replicated across both Caucasian populations were subsequently tested for association in the African-American (N = 1,594), Chinese (N = 758), and Hispanic (N = 1,422) populations of MESA. Variants in the APOB gene region were significantly associated with mean VLDL diameter in GOLDN, and in the Caucasian and Hispanic populations of MESA, while variation in the hepatic lipase (LIPC) gene was associated with mean HDL diameter in both Caucasians populations only. Our findings suggest that the genetic underpinnings of mean lipoprotein diameter differ by race/ethnicity. As lipoprotein diameters are modifiable, this may lead new strategies to modify lipoprotein profiles during the reduction of IR that are sensitive to race/ethnicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aouizerat BE, Kulkarni M, Heilbron D, Drown D, Raskin S, Pullinger CR, Malloy MJ et al (2003) Genetic analysis of a polymorphism in the human apoA-V gene: effect on plasma lipids. J Lipid Res 44(6):1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Atkinson B, Thereau T (2007) Kinship: mixed-effects Cox models, sparse matrices, and modeling data from large pedigrees. R package version, 1(1.0–17)

    Google Scholar 

  • Austin MA, Talmud PJ, Luong LA, Haddad L, Day IN, Newman B, Edwards KL et al (1998) Candidate-gene studies of the atherogenic lipoprotein phenotype: a sib-pair linkage analysis of DZ women twins. Am J Human Genetics 62(2):406–419

    Article  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford, England) 21(2):263–265

    Article  CAS  Google Scholar 

  • Beard CM, Barnard RJ, Robbins DC, Ordovas JM, Schaefer EJ (1996) Effects of diet and exercise on qualitative and quantitative measures of LDL and its susceptibility to oxidation. Arterioscler Thromb Vasc Biol 16(2):201–207

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol) 57(1):289–300

    Google Scholar 

  • Bild DE (2002) Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156(9):871–881

    Article  PubMed  Google Scholar 

  • Chasman DI, Paré G, Mora S, Hopewell JC, Peloso G, Clarke R, Cupples LA et al. (2009) Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. (GR. Abecasis, Ed.) PLoS Genet, 5(11):e1000730

  • Couture P, Otvos JD, Cupples LA, Lahoz C, Wilson PWF, Schaefer EJ, Ordovas JM (2000) Association of the C-514T polymorphism in the hepatic lipase gene with variations in lipoprotein subclass profiles: the Framingham offspring study. Arterioscler Thromb Vasc Biol 20(3):815–822

    Article  PubMed  CAS  Google Scholar 

  • Festa A, Williams K, Hanley AJ, Otvos JD, Goff DC, Wagenknecht LE, Haffner SM (2005) Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the insulin resistance atherosclerosis study. Circulation, 111:3465–3472. Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA

    Google Scholar 

  • Frazier-Wood AC, Aslibekyan S, Borecki IB, Hopkins PN, Lai CQ, Ordovas JM, Straka RJ et al (2012) Genome-wide association study indicates variants associated with insulin signaling and inflammation mediate lipoprotein responses to fenofibrate. Pharmacogenet Genomics 22(10):750–757

    Article  PubMed  CAS  Google Scholar 

  • Freeman D (2003) A polymorphism of the cholesteryl ester transfer protein gene predicts cardiovascular events in non-smokers in the West of Scotland coronary prevention study. Eur Heart J 24(20):1833–1842

    Article  PubMed  CAS  Google Scholar 

  • Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, Pugh K et al (2003) Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 52:453–462

    Article  PubMed  CAS  Google Scholar 

  • Goff DC Jr, D’Agostino RB Jr, Haffner SM, Otvos JD (2005) Insulin resistance and adiposity influence lipoprotein size and subclass concentrations. Results from the insulin resistance atherosclerosis study. Metabolism 54:264–270

    Article  PubMed  CAS  Google Scholar 

  • Goodarzi MO, Guo X, Taylor KD, Quiñones MJ, Samayoa C, Yang H, Saad MF et al (2003) Determination and use of haplotypes: ethnic comparison and association of the lipoprotein lipase gene and coronary artery disease in Mexican-Americans. Genet Med 5(4):322–327

    Article  PubMed  CAS  Google Scholar 

  • Gray RS, Robbins DC, Wang W, Yeh JL, Fabsitz RR, Cowan LD, Welty TK et al (1997) Relation of LDL size to the insulin resistance syndrome and coronary heart disease in American Indians. The Strong Heart Study. Arterioscler Thromb Vasc Biol 17:2713–2720

    Article  PubMed  CAS  Google Scholar 

  • Jeyarajah EJ, Cromwell WC, Otvos JD (2006) Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med 26(4):847–870

    Article  PubMed  Google Scholar 

  • Kabagambe EK, Ordovas JM, Tsai MY, Borecki IB, Hopkins PN, Glasser SP, Arnett DK (2009) Smoking, inflammatory patterns and postprandial hypertriglyceridemia. Atherosclerosis 203:633–639

    Article  PubMed  CAS  Google Scholar 

  • Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S, Hubbell E et al (2008) Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 40(10):1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Kral BG, Becker LC, Yook RM, Blumenthal RS, Kwiterovich PO, Otvos JD, Becker DM (2001) Racial differences in low-density lipoprotein particle size in families at high risk for premature coronary heart disease. Ethn Dis 11(2):325–337

    PubMed  CAS  Google Scholar 

  • Kullo IJ, Jan MF, Bailey KR, Mosley TH, Turner ST (2007) Ethnic differences in low-density lipoprotein particle size in hypertensive adults. J Clin Lipidol 1(3):218–224

    Article  PubMed  Google Scholar 

  • Lemieux I, Laperrière L, Dzavik V, Tremblay G, Bourgeois J, Després J-P (2002) A 16-week fenofibrate treatment increases LDL particle size in type IIA dyslipidemic patients. Atherosclerosis 162(2):363–371

    Article  PubMed  CAS  Google Scholar 

  • Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M (2010) Robust relationship inference in genome-wide association studies. Bioinformatics (Oxford, England) 26(22):2867–2873

    Article  CAS  Google Scholar 

  • Melenovsky V, Malik J, Wichterle D, Simek J, Pisarikova A, Skrha J, Poledne R et al (2002) Comparison of the effects of atorvastatin or fenofibrate on nonlipid biochemical risk factors and the LDL particle size in subjects with combined hyperlipidemia. Am Heart J 144(4):E11–E18

    Article  Google Scholar 

  • Nature Publishing Group (2012) Asking for more. Nature Genet 44(7):733

    Article  Google Scholar 

  • Nettleton JA, Steffen LM, Ballantyne CM, Boerwinkle E, Folsom AR (2007) Associations between HDL-cholesterol and polymorphisms in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in African American and White adults. Atherosclerosis 194(2):e131–e140

    Article  PubMed  CAS  Google Scholar 

  • Nishina PM, Johnson JP, Naggert JK, Krauss RM (1992) Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19. Proc Natl Acad Sci USA 89:0027–8424

    Article  Google Scholar 

  • O’Meara JG, Kardia SLR, Armon JJ, Brown CA, Boerwinkle E, Turner ST (2004) Ethnic and sex differences in the prevalence, treatment, and control of dyslipidemia among hypertensive adults in the GENOA study. Arch Intern Med 164(12):1313–1318

    Article  PubMed  Google Scholar 

  • Okumura K, Matsui H, Ogawa Y, Takahashi R, Matsubara K, Imai H, Imamura A et al (2003) The polymorphism of the beta3-adrenergic receptor gene is associated with reduced low-density lipoprotein particle size. Metabolism 52:356–361

    Article  PubMed  CAS  Google Scholar 

  • Osgood D (2003) Genetic variation at the scavenger receptor class B type I gene locus determines plasma lipoprotein concentrations and particle size and interacts with type 2 diabetes: the Framingham study. J Clin Endocrinol Metab 88:2869–2879

    Article  PubMed  CAS  Google Scholar 

  • Rotter JI, Bu X, Cantor RM, Warden CH, Brown J, Gray RJ, Blanche PJ et al (1996) Multilocus genetic determinants of LDL particle size in coronary artery disease families. Am J Hum Genet 58:585–594

    PubMed  CAS  Google Scholar 

  • Ruel IL, Gaudet D, Perron P, Bergeron J, Julien P, Lamarche B (2002) Characterization of LDL particle size among carriers of a defective or a null mutation in the lipoprotein lipase gene: the Quebec LIPD Study. Arterioscler Thromb Vasc Biol 22:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Talmud PJ, Edwards KL, Turner CM, Newman B, Jutta M, Humphries SE, Austin MA et al (2000) Linkage of the cholesteryl ester transfer protein (CETP) gene to LDL particle size. Use of a novel tetranucleotide repeat within the CETP promoter. Circulation 101:2461–2466

    Article  PubMed  CAS  Google Scholar 

  • Talmud PJ, Martin S, Taskinen M-R, Frick MH, Nieminen MS, Kesäniemi YA, Pasternack A et al (2004) APOA5 gene variants, lipoprotein particle distribution, and progression of coronary heart disease: results from the LOCAT study. J Lipid Res 45(4):750–756

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Qiang H, Chen D, Zhang C, Zhuang Y (2002) CETP gene mutation (D442G) increases low-density lipoprotein particle size in patients with coronary heart disease. Clin Chim Acta 322:85–90

    Article  PubMed  CAS  Google Scholar 

  • Wood RJ, Volek JS, Liu Y, Shachter NS, Contois JH, Fernandez ML (2006) Carbohydrate restriction alters lipoprotein metabolism by modifying VLDL, LDL, and HDL subfraction distribution and size in overweight men. J Nutr 136(2):384–389

    PubMed  CAS  Google Scholar 

  • Wung S-F, Aouizerat BE (2003) Gender and ethnic differences in a case-control study of dyslipidemia: using the apolipoprotein A-V gene as an exemplar in cardiovascular genetics. Res Theory Nurs Pract 17(4):281–299

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the staff of the GOLDN study for the assistance in data collection and management. The authors thank the participants of the MESA study, the Coordinating Center, MESA investigators, and study staff for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org. GOLDN is funded by National Heart, Lung, and Blood Institute [grant number U01HL072524-04]. MESA and the MESA SHARe project are conducted and supported by contracts N01-HC-95159 through N01-HC-95169 and RR-024156 from the National Heart, Lung, and Blood Institute. Funding for MESA SHARe genotyping was provided by National Heart, Lung, and Blood Institute [Contract N02‐HL‐6‐4278]. MESA Family is conducted and supported in collaboration with MESA investigators; support is provided by National Heart, Lung, and Blood Institute grants and contracts [grant numbers R01HL071051, R01HL071205, R01HL071250, R01HL071251, R01HL071252, R01HL071258, R01HL071259].

Conflict of interest

All authors declare that they have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis C. Frazier-Wood.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1090 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frazier-Wood, A.C., Manichaikul, A., Aslibekyan, S. et al. Genetic variants associated with VLDL, LDL and HDL particle size differ with race/ethnicity. Hum Genet 132, 405–413 (2013). https://doi.org/10.1007/s00439-012-1256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1256-1

Keywords

Navigation