Skip to main content
Log in

The evaluation of bone mineral density in patients with nonalcoholic fatty liver disease

Erfassung der Mineraldichte des Knochens bei Patienten mit nicht-alkoholischer Fettlebererkrankung

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Abstract

Background and aim

Nonalcoholic fatty liver diseases (NAFLD) are a clinical spectrum of disorders, of which nonalcoholic steatohepatitis (NASH) is the most strongly associated with inflammation. Inflammation is a known risk factor for low bone mass in the body. The primary goal of the present study was to evaluate the association between bone mineral density and liver function in patients with NASH.

Materials and methods

Consenting patients with a diagnosis of NAFLD were included in the study. Extent of fatty change was graded based on ultrasonographic appearance (Grade 1, mild; Grade 2, moderate; Grade 3, severe). Bone mineral density was measured using the dual-energy x-ray absorptiometry method. ALT and hs-CRP were considered as noninvasive marker of NASH. According to ALT levels, patients were divided into two subgroups.

Results

A total of 102 patients with NAFLD and 54 healthy controls participated in the study. None of the patients with NAFLD had an abnormal bone mineral density. Furthermore, there was no difference between groups with regard to serum vitamin D levels. A subgroup analysis revealed that female patients with elevated serum ALT level had significantly lower bone mineral densities and higher hsCRP levels than female patients with normal ALT levels. The difference in vitamin D levels and body mass indices between the same subgroups was statistically insignificant.

Conclusions

Simple steatosis of the liver does not affect bone mineral density. However, in a subgroup of patients with NAFLD, the presence of elevated serum ALT and hs-CRP levels, which are suggestive of NASH, was associated with lower bone mineral densities. Better understanding of the biological basis and the complex interactions between NAFLD and bone mass may help guide the clinical management of bone diseases associated with inflammation of the liver.

Zusammenfassung

Hintergrund und Ziel

Vom klinischen Spektrum der nicht-alkoholischen Fettlebererkrankungen (NAFLD) ist die nicht-alkoholische Steaotohepatitis (NASH) am meisten mit einer Entzündung assoziiert. Entzündung ist ein bekannter Risikofaktor für Abnahme der Knochenmasse des Körpers. Das primäre Ziel unserer Studie war es, bei Patienten mit NASH den Zusammenhang zwischen der Mineraldichte des Knochens und der Leberfunktion zu evaluieren.

Material und Methoden

Nach Zustimmung zur Teilnahme wurden Patienten mit der Diagnose einer NAFLD in die Studie aufgenommen. Das Ausmass der Verfettung der Leber basierte auf dem sonographischen Befund (Grad 1: mild, Grad 2: mäßig, Grad 3: schwer). Die Knochendichte wurde mittels der Dualen-Energie Röntgen Absorptiomerie Methode erhoben. Die ALT und das hoch-sensitivive (hs) CRP dienten als nicht-invasive Marker der NASH: je nach ALT Werten wurden die Patienten in 2 Untergruppen eingeteilt.

Ergebnisse

Insgesamt nahmen 102 Patienten mit NAFLD und 54 Kontrollen an der Studie teil. Keiner der Patienten mit NAFLD hatte eine abnormale Knochendichte. Es bestand auch kein Unterschied bezüglich der Vitamin D Spiegel. Die Analyse der Subgruppen ergab, dass Frauen mit erhöhter ALT signifikant niedrigere Knochendichte und höhere hsCRP Spiegel im Vergleich zu weiblichen Patienten mit normalen ALT Spiegeln aufwiesen. Es bestand in diesen Untergruppen kein signifikanter Unterschied in den Vitamin D Spiegeln und den Body Mass Indices.

Schlußfolgerungen

Die Steatose der Leber allein hat keine Auswirkung auf die Mineraldichte des Knochens. In einer Untergruppe der Patienten mit NAFLD wurde jedoch bei jenen mit erhöhter ALT und hsCRP (was als Hinweis auf eine NASH gilt) eine relativ verminderte Knochendichte beobachtet. Ein besseres Verständnis der biologischen Grundlagen und der komplizierten Interaktionen zwischen den NAFLD und der Knochendichte könnten im klinischen Management von mit Entzündung der Leber assoziierten Knochenerkrankungen helfen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

SLE:

Systemic lupus erythematosus

RA:

Rheumatoid arthritis

BMD:

Bone mineral density

LFTs:

Liver function tests

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

GGT:

Gamma-glutamyl transferase

ALP:

Alkaline phosphatase

BMI:

Body mass index

PTH:

Parathyroid hormon

hs-CRP:

High sensitivity C reactive protein

References

  1. Adams LA, Lindor KD. Nonalcoholic fatty liver disease. Ann Epidemiol. 2007;17:863–9.

    Article  PubMed  Google Scholar 

  2. Duvnjak M, Lerotic I, Barsic N,et al. Pathogenesis and management issues for non-alcoholic fatty liver disease. World J Gastroenterol. 2007;13:4539–50.

    PubMed  CAS  Google Scholar 

  3. Vuppalanchi R, Chalasani N. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Selected practical issues in their evaluation and management. Hepatology 2009;49:306–17

    Article  PubMed  Google Scholar 

  4. Kunde SS, Lazenby AJ, Clements RH, Abrams GA. Spectrum of NAFLD and diagnostic implications of the proposed new normal range for serum ALT in obese women. Hepatology 2005;42:650–6.

    Article  PubMed  Google Scholar 

  5. Kogiso T, Moriyoshi Y, Shimizu S, Nagahara H, Shiratori K. High-sensitivity C-reactive protein as a serum predictor of nonalcoholic fatty liver disease based on the akaike Information criterion scoring system in the general Japanese population. J Gastroenterol. 2009;44:313–21.

    Article  PubMed  CAS  Google Scholar 

  6. Kinjo M, Setoguchi S, Solomon DH. Bone mineral density in adults with the metabolic syndrome: Analysis in a population-based US sample. J Clin Endocrinol Metab. 2007;92:4161–4.

    Article  PubMed  CAS  Google Scholar 

  7. Kelman A, Lane NE. The management of secondary osteoporosis. Best Pract Res Clin Rheumatol. 2005;19:1021–37.

    Article  PubMed  Google Scholar 

  8. Kotake S, Udagawa N, Hakoda M,et al. Activated human T cells directly induce osteoclastogenesis from human monocytes: Possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum. 2001;44:1003–12.

    Article  PubMed  CAS  Google Scholar 

  9. Smith BJ, Lerner MR, Bu SY,et al. Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone 2006;38:378–6.

    Article  PubMed  CAS  Google Scholar 

  10. Caetano-Lopes J, Canhao H, Fonseca JE. Osteoimmunology—the hidden immune regulation of bone. Autoimmun Rev. 2009;8:250–5.

    Google Scholar 

  11. Tilg H, Moschen AR, Kaser A, Pines A, Dotan I. Gut inflammation and osteoporosis: Basic and clinical concepts. Gut 2008;57:684–4.

    Article  PubMed  CAS  Google Scholar 

  12. Lacativa PG, Farias ML. Osteoporosis and inflammation. Arq Bras Endocrinol Metabol. 2010;54:123–2.

    Article  PubMed  Google Scholar 

  13. Tilg H. The role of cytokines in non-alcoholic fatty liver disease. Dig Dis. 2010;28:179–85.

    Article  PubMed  Google Scholar 

  14. Ndumele CE, Nasir K, Conceicao RD,et al. Hepatic steatosis, obesity, and the metabolic syndrome are independently and additively associated with increased systemic inflammation. Arterioscler Thromb Vasc Biol. 2011;31(8):1927–32.

    Article  PubMed  CAS  Google Scholar 

  15. Matthews DR, Hosker JP, Rudenski AS,et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–19.

    Article  PubMed  CAS  Google Scholar 

  16. Prati D, Taioli E, Zanella A,et al. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med 2002;137:1–10.

    PubMed  CAS  Google Scholar 

  17. Bouillon R, Auwerx J, Dekeyser L,et al. Serum vitamin D metabolites and their binding protein in patients with liver cirrhosis. J Clin Endocrinol Metab. 1984;59:86–9.

    Article  PubMed  CAS  Google Scholar 

  18. Skinner RK, Sherlock S, Long RG, Wilis MR. 25-Hydroxylation of vitamin D in primary biliary cirrhosis. Lancet 1977;1:720–1

    Article  PubMed  CAS  Google Scholar 

  19. Nakchbandi IA, Van Der Merwe SW. Current understanding of osteoporosis associated with liver disease. Nat Rev Gastroenterol Hepatol. 2009;6:660–70

    Article  PubMed  Google Scholar 

  20. Hwang DK, Choi HJ. The relationship between low bone mass and metabolic syndrome in Korean women. Osteoporos Int. 2009;21(3):425–31.

    Article  PubMed  Google Scholar 

  21. Marchesini G, Marzocchi R. Metabolic syndrome and NASH. Clin Liver Dis. 2007;11:105–17ix.

    Article  PubMed  Google Scholar 

  22. Leslie WD, Bernstein CN, Leboff MS. AGA technical review on osteoporosis in hepatic disorders. Gastroenterology 2003;125:941–66.

    Article  PubMed  Google Scholar 

  23. Schiefke I, Fach A, Wiedmann M,et al. Reduced bone mineral density and altered bone turnover markers in patients with non-cirrhotic chronic hepatitis B or C infection. World J Gastroenterol. 2005;11:1843–7.

    PubMed  CAS  Google Scholar 

  24. Guggenbuhl P, Deugnier Y, Boisdet JF,et al. Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporos Int. 2005;16:1809–14.

    Article  PubMed  CAS  Google Scholar 

  25. Hegedus D, Ferencz V, Lakatos PL,et al. Decreased bone density, elevated serum osteoprotegerin, and beta-cross-laps in Wilson disease. J Bone Miner Res. 2002;17:1961–7.

    Article  Google Scholar 

  26. Crippin JS, Jorgensen RA, Dickson ER, Lindor KD. Hepatic osteodystrophy in primary biliary cirrhosis: Effects of medical treatment. Am J Gastroenterol. 1994;89:47–50.

    PubMed  CAS  Google Scholar 

  27. Levy C, Lindor KD. Management of osteoporosis, fat-soluble vitamin deficiencies, and hyperlipidemia in primary biliary cirrhosis. Clin Liver Dis. 2003;7:901–0.

    Article  PubMed  Google Scholar 

  28. Bauer DC, Sklarin PM, Stone KL,et al. Biochemical markers of bone turnover and prediction of hip bone loss in older women: The study of osteoporotic fractures. J Bone Miner Res. 1999;14:1404-0.

    Article  PubMed  CAS  Google Scholar 

  29. Bernstein CN, Leslie WD, Leboff MS. AGA technical review on osteoporosis in gastrointestinal diseases. Gastroenterology 2003;124:795–41.

    Article  PubMed  Google Scholar 

  30. Rogers A, Hannon RA, Eastell R. Biochemical markers as predictors of rates of bone loss after menopause. J Bone Miner Res. 2000;15:1398–04.

    Article  PubMed  CAS  Google Scholar 

  31. Mishra P, Younossi ZM. Abdominal ultrasound for diagnosis of nonalcoholic fatty liver disease (NAFLD). Am J Gastroenterol. 2007;102:2716–7.

    Article  PubMed  Google Scholar 

  32. Babali A, Cakal E, Purnak T,et al. Serum alpha-fetoprotein levels in liver steatosis. Hepatol Int. 2009;3(4):551–5.

    Article  PubMed  Google Scholar 

  33. Hamaguchi M, Kojima T, Itoh Y, et al. The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am J Gastroenterol. 2007;102:2708–15.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

No funding has been received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugrul Purnak MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purnak, T., Beyazit, Y., Ozaslan, E. et al. The evaluation of bone mineral density in patients with nonalcoholic fatty liver disease. Wien Klin Wochenschr 124, 526–531 (2012). https://doi.org/10.1007/s00508-012-0211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-012-0211-4

Keywords

Schlüsselwörter

Navigation