Skip to main content
Log in

Enzymatic repair of Amadori products

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Protein deglycation, a new form of protein repair, involves several enzymes. Fructosamine-3-kinase (FN3K), an enzyme found in mammals and birds, phosphorylates fructosamines on the third carbon of their sugar moiety, making them unstable and causing them to detach from proteins. This enzyme acts particularly well on fructose-epsilon-lysine, both in free form and in the accessible regions of proteins. Mice deficient in FN3K accumulate protein-bound fructosamines and free fructoselysine, indicating that the deglycation mechanism initiated by FN3K is operative in vivo. Mammals and birds also have an enzyme designated ‘FN3K-related protein’ (FN3KRP), which shares ≈65% sequence identity with FN3K. Unlike FN3K, FN3KRP does not phosphorylate fructosamines, but acts on ribulosamines and erythrulosamines. As with FN3K, the third carbon is phosphorylated and this leads to destabilization of the ketoamines. Experiments with intact erythrocytes indicate that FN3KRP is also a protein-repair enzyme. Its physiological substrates are most likely formed from ribose 5-phosphate and erythrose 4-phosphate, which give rise to ketoamine 5- or 4-phosphates. The latter are dephosphorylated by ‘low-molecular-weight protein-tyrosine-phosphatase-A’ (LMW-PTP-A) before FN3KRP transfers a phosphate on the third carbon. The specificity of FN3K homologues present in plants and bacteria is similar to that of mammalian FN3KRP, suggesting that deglycation of ribulosamines and/or erythrulosamines is an ancient mechanism. Mammalian cells contain also a phosphatase acting on fructosamine 6-phosphates, which result from the reaction of proteins with glucose 6-phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baynes JW, Watkins NG, Fisher CI, Hull CJ, Patrick JS, Ahmed MU, Dunn JA, Thorpe SR (1989) The Amadori product on protein: structure and reactions. Prog Clin Biol Res 304:43–67

    PubMed  CAS  Google Scholar 

  • Clarke S (2003) Aging as war between chemical, biochemical processes: protein methylation, the recognition of age-damaged proteins for repair. Ageing Res Rev 2:263–285

    Article  PubMed  CAS  Google Scholar 

  • Collard F, Delpierre G, Stroobant V, Matthijs G, Van Schaftingen E (2003) A mammalian protein homologous to fructosamine-3-kinase is a ketosamine-3-kinase acting on psicosamines and ribulosamines but not on fructosamines. Diabetes 52:2888–2895

    Article  PubMed  CAS  Google Scholar 

  • Collard F, Wiame E, Bergans N, Fortpied J, Vertommen D, Vanstapel F, Delpierre G, Van Schaftingen E (2004) Fructosamine 3-kinase-related protein and deglycation in human erythrocytes. Biochem J 382:137–143

    Article  PubMed  CAS  Google Scholar 

  • Collard F, Zhang J, Nemet I, Qanungo KR, Monnier VM, Yee VC (2008) Crystal structure of the deglycating enzyme fructosamine oxidase (amadoriase II). J Biol Chem 283:27007–27016

    Article  PubMed  CAS  Google Scholar 

  • Conner JR, Beisswenger PJ, Szwergold BS (2004) The expression of the genes for fructosamine-3-kinase and fructosamine-3-kinase-related protein appears to be constitutive and unaffected by environmental signals. Biochem Biophys Res Commun 323:932–936

    Article  PubMed  CAS  Google Scholar 

  • Delpierre G, Rider MH, Collard F, Stroobant V, Vanstapel F, Santos H, Van Schaftingen E (2000) Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes 49:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Delpierre G, Collard F, Fortpied J, Van Schaftingen E (2002) Fructosamine 3-kinase is involved in an intracellular deglycation pathway in human erythrocytes. Biochem J 365:801–808

    PubMed  CAS  Google Scholar 

  • Delpierre G, Vertommen D, Communi D, Rider MH, Van Schaftingen E (2004) Identification of fructosamine residues deglycated by fructosamine-3-kinase in human hemoglobin. J Biol Chem 279:27613–27620

    Article  Google Scholar 

  • Delplanque J, Delpierre G, Opperdoes FR, Van Schaftingen E (2004) Tissue distribution and evolution of fructosamine 3-kinase and fructosamine 3-kinase-related protein. J Biol Chem 279:46606–46613

    Article  PubMed  CAS  Google Scholar 

  • Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E (2010) Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem 285:9346–9356

    Google Scholar 

  • Fortpied J, Gemayel R, Stroobant V, van Schaftingen E (2005) Plant ribulosamine/erythrulosamine 3-kinase, a putative protein-repair enzyme. Biochem J 388:795–802

    Article  PubMed  CAS  Google Scholar 

  • Fortpied J, Maliekal P, Vertommen D, Van Schaftingen E (2006) Magnesium-dependent phosphatase-1 is a protein-fructosamine-6-phosphatase potentially involved in glycation repair. J Biol Chem 281:18378–18385

    Article  PubMed  CAS  Google Scholar 

  • Fortpied J, Gemayel R, Vertommen D, Van Schaftingen E (2007) Identification of protein-ribulosamine-5-phosphatase as human low-molecular-mass protein tyrosine phosphatase-A. Biochem J 406:139–145

    Article  PubMed  CAS  Google Scholar 

  • Galperin MY, Moroz OV, Wilson KS, Murzin AG (2006) House cleaning, a part of good housekeeping. Mol Microbiol 59:5–19

    Article  PubMed  CAS  Google Scholar 

  • Gemayel R, Fortpied J, Rzem R, Vertommen D, Veiga-da-Cunha M, Van Schaftingen E (2007) Many fructosamine 3-kinase homologues in bacteria are ribulosamine/erythrulosamine 3-kinases potentially involved in protein deglycation. FEBS J 274:4360–4374

    Article  PubMed  CAS  Google Scholar 

  • Hodge JE (1955) The Amadori rearrangement. Adv Carbohydr Chem 10:169–205

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Lowenson JD, MacLaren DC, Clarke S, Young SG (1997) Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proc Natl Acad Sci USA 94:6132–6137

    Article  PubMed  CAS  Google Scholar 

  • Krause R, Oehme A, Wolf K, Henle T (2006) A convenient HPLC assay for the determination of fructosamine-3-kinase activity in erythrocytes. Anal Bioanal Chem 386:2019–2025

    Article  PubMed  CAS  Google Scholar 

  • Leslie RD, Cohen RM (2009) Biologic variability in plasma glucose, hemoglobin A1c and advanced glycation end products associated with diabetes complications. J Diabetes Sci Technol 3:635–643

    PubMed  Google Scholar 

  • Mohás M, Kisfali P, Baricza E, Mérei A, Maász A, Cseh J, Mikolás E, Szijártó IA, Melegh B, Wittmann I (2010) A polymorphism within the fructosamine-3-kinase gene is associated with HbA1c Levels and the onset of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 118:209–212

    Article  PubMed  Google Scholar 

  • Monnier VM, Wu X (2003) Enzymatic deglycation with amadoriase enzymes from Aspergillus sp. as a potential strategy against the complications of diabetes and aging. Biochem Soc Trans 31:1349–1353

    Article  PubMed  CAS  Google Scholar 

  • Moskovitz J (2005) Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta 1703:213–219

    PubMed  CAS  Google Scholar 

  • Pascal SM, Veiga-da-Cunha M, Gilon P, Van Schaftingen E, Jonas JC (2010) Effects of fructosamine-3-kinase deficiency on function and survival of mouse pancreatic islets after prolonged culture in high glucose or ribose concentrations. Am J Physiol Endocrinol Metab 298:E586–E596

    Article  PubMed  CAS  Google Scholar 

  • Payne LS, Brown PM, Middleditch M, Baker E, Cooper GJ, Loomes KM (2008) Mapping of the ATP-binding domain of human fructosamine 3-kinase-related protein by affinity labelling with 5′-[p-(fluorosulfonyl)benzoyl]adenosine. Biochem J 416:281–288

    Google Scholar 

  • Peisach E, Selengut JD, Dunaway-Mariano D, Allen KN (2004) X-ray crystal structure of the hypothetical phosphotyrosine phosphatase MDP-1 of the haloacid dehalogenase superfamily. Biochemistry 43:12770–12779

    Google Scholar 

  • Petersen A, Szwergold BS, Kappler F, Weingarten M, Brown TR (1990) Identification of sorbitol 3-phosphate and fructose 3-phosphate in normal and diabetic human erythrocytes. J Biol Chem 265:17424–17427

    PubMed  CAS  Google Scholar 

  • Petersen A, Kappler F, Szwergold BS, Brown TR (1992) Fructose metabolism in the human erythrocyte. Phosphorylation to fructose 3-phosphate. Biochem J 284:363–366

    PubMed  CAS  Google Scholar 

  • Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem 212:101–105

    Article  PubMed  CAS  Google Scholar 

  • Richard JP (1993) Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans 21:549–553

    PubMed  CAS  Google Scholar 

  • Selengut JD (2001) MDP-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases. Biochemistry 40:12704–12711

    Article  PubMed  CAS  Google Scholar 

  • Selengut JD, Levine RL (2000) MDP-1: a novel eukaryotic magnesium-dependent phosphatase. Biochemistry 39:8315–8324

    Article  PubMed  CAS  Google Scholar 

  • Szwergold BS (2005) Carnosine and anserine act as effective transglycating agents in decomposition of aldose-derived Schiff bases. Biochem Biophys Res Commun 336:36–41

    Article  PubMed  CAS  Google Scholar 

  • Szwergold BS (2006) Alpha-thiolamines such as cysteine and cysteamine act as effective transglycating agents due to formation of irreversible thiazolidine derivatives. Med Hypotheses 66:698–707

    Article  PubMed  CAS  Google Scholar 

  • Szwergold BS, Kappler F, Brown TR (1990) Identification of fructose 3-phosphate in the lens of diabetic rats. Science 247:451–454

    Article  PubMed  CAS  Google Scholar 

  • Szwergold BS, Howell S, Beisswenger PJ (2001) Human fructosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes 50:2139–2147

    Article  PubMed  CAS  Google Scholar 

  • Szwergold B, Manevich Y, Payne L, Loomes K (2007) Fructosamine-3-kinase-related-protein phosphorylates glucitolamines on the C-4 hydroxyl: novel substrate specificity of an enigmatic enzyme. Biochem Biophys Res Commun 361:870–875

    Article  PubMed  CAS  Google Scholar 

  • Van Schaftingen E, Rzem R, Veiga-da-Cunha M (2009) l-2-Hydroxyglutaric aciduria, a disorder of metabolite repair. J Inherit Metab Dis 32:135–142

    Article  PubMed  Google Scholar 

  • Veiga-da-Cunha M, Jacquemin P, Delpierre G, Godfraind C, Theate I, Vertommen D, Clotman F, Lemaigre F, Devuyst O, Van Schaftingen E (2006) Increased protein glycation in fructosamine-3-kinase deficient mice. Biochem J 399:257–264

    Article  PubMed  CAS  Google Scholar 

  • Wiame E, Delpierre G, Collard F, Van Schaftingen E (2002) Identification of a pathway for the utilization of the Amadori product fructoselysine in Escherichia coli. J Biol Chem 277:42523–42529

    Article  PubMed  CAS  Google Scholar 

  • Wiame E, Duquenne A, Delpierre G, Van Schaftingen E (2004) Identification of enzymes acting on alpha-glycated amino acids in Bacillus subtilis. FEBS Lett 577:469–472

    Article  PubMed  CAS  Google Scholar 

  • Wiame E, Lamosa P, Santos H, Van Schaftingen E (2005) Identification of glucoselysine-6-phosphate deglycase, an enzyme involved in the metabolism of the fructation product glucoselysine. Biochem J 392:263–269

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Interuniversity Attraction Poles Program-Belgian Science Policy, by the Belgian Scientific Fund for Medical Research (FRSM), and by the DIANE centre of excellence programme of the Région Wallonne. FC and EW are Chargés de Recherche and MVDC is Chercheur Qualifié of the Fonds National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile Van Schaftingen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Schaftingen, E., Collard, F., Wiame, E. et al. Enzymatic repair of Amadori products. Amino Acids 42, 1143–1150 (2012). https://doi.org/10.1007/s00726-010-0780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0780-3

Keywords

Navigation