Skip to main content
Log in

Nodular lesions and mesangiolysis in diabetic nephropathy

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Diabetic nephropathy is a leading cause of end-stage renal failure all over the world. Advanced human diabetic nephropathy is characterized by the presence of specific lesions including nodular lesions, doughnut lesions, and exudative lesions. Thus far, animal models precisely mimicking advanced human diabetic nephropathy, especially nodular lesions, remain to be fully established. Animal models with spontaneous diabetic kidney diseases or with inducible kidney lesions may be useful for investigating the pathogenesis of diabetic nephropathy. Based on pathological features, we previously reported that diabetic glomerular nodular-like lesions were formed during the reconstruction process of mesangiolysis. Recently, we established nodular-like lesions resembling those seen in advanced human diabetic nephropathy through vascular endothelial injury and mesangiolysis by administration of monocrotaline. Here, in this review, we discuss diabetic nodular lesions and its animal models resembling human diabetic kidney lesions, with our hypothesis that endothelial cell injury and mesangiolysis might be required for nodular lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parving HH, Mauer M, Fioretto P, Rossing P, Ritz E. Diabetic nephropathy. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL, Brenner BM, editors. The Kidney. Philadelphia: Elsevier Saunders; 2012. p. 1411–54.

    Google Scholar 

  2. Wada T, Shimizu M, Toyama T, Hara A, Kaneko S, Furuichi K. Clinical impact of albuminuria in diabetic nephropathy. Clin Exp Nephrol. 2012;16:96–101.

    Article  PubMed  CAS  Google Scholar 

  3. Moriya T, Moriya R, Yajima Y, Steffes MW, Mauer M. Urinary albumin as an indicator of diabetic nephropathy lesions in Japanese type 2 diabetic patients. Nephron. 2002;91:292–9.

    Article  PubMed  CAS  Google Scholar 

  4. Osterby R, Gall MA, Schmitz A, Nielsen FS, Nyberg G, Parving HH. Glomerular structure and function in proteinuric type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993;36:1064–70.

    Article  PubMed  CAS  Google Scholar 

  5. Ritz E, Wolf G. Pathogenesis, clinical manifestations, and natural history of diabetic nephropathy. In: Floege J, Johnson RJ, Feehally J, editors. Comprehensive clinical nephrology. Philadelphia: Elsevier Saunders; 2010. p. 359–76.

    Chapter  Google Scholar 

  6. Kimmelstiel P, Wilson C. Intercapillary lesions in the glomeruli of kidney. Am J Pathol. 1936;12:83–98.

    PubMed  CAS  Google Scholar 

  7. Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, Breyer MD, Harris RC. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol. 2006;17:2664–9.

    Article  PubMed  CAS  Google Scholar 

  8. Yu L, Su Y, Paueksakon P, Cheng H, Chen X, Wang H, Harris RC, Zent R, Pozzi A. Integrin α1/Akita double-knockout mice on a Balb/c background develop advanced features of human diabetic nephropathy. Kidney Int. 2012;81:1086–97.

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe M, Nakashima H, Miyake K, Sato T, Saito T. Aggravation of diabetic nephropathy in OLETF rats by Thy-1.1 nephritis. Clin Exp Nephrol. 2011;15:25–9.

    Article  PubMed  CAS  Google Scholar 

  10. Ainsworth SK, Hirsch HZ, Brackett NC Jr, Brissie RM, Williams AV Jr, Hennigar GR. Diabetic glomerulonephropathy: histopathologic, immunofluorescent, and ultrastructural studies of 16 cases. Hum Pathol. 1982;13:470–8.

    Article  PubMed  CAS  Google Scholar 

  11. Glick AD, Jacobson HR, Haralson MA. Mesangial deposition of type I collagen in human glomerulosclerosis. Hum Pathol. 1992;23:1373–9.

    Article  PubMed  CAS  Google Scholar 

  12. Nishi S, Ueno M, Hisaki S, Iino N, Iguchi S, Oyama Y, Imai N, Arakawa M, Gejyo F. Ultrastructural characteristics of diabetic nephropathy. Med Electron Microsc. 2000;33:65–73.

    Article  PubMed  CAS  Google Scholar 

  13. Saito Y, Kida H, Takeda S, Yoshimura M, Yokoyama H, Koshino Y, Hattori N. Mesangiolysis in diabetic glomeruli: its role in the formation of nodular lesions. Kidney Int. 1988;34:389–96.

    Article  PubMed  CAS  Google Scholar 

  14. Ikeda K, Kida H, Yokoyama H, Naito T, Takasawa K, Goshima S, Takeda S, Yoshimura M, Tomosugi N, Abe T, Hattori N, Oshima A. Participation of collagen fibers in morphogenesis of diabetic nodular lesions. Jpn J Nephrol. 1988;7:843–53.

    Google Scholar 

  15. Hong D, Zheng T, Jia-qing S, Jian W, Zhi-hong L, Lei-shi L. Nodular glomerular lesion: a later stage of diabetic nephropathy? Diabetes Res Clin Pract. 2007;78:189–95.

    Article  PubMed  Google Scholar 

  16. Schwartz MM, Lewis EJ, Leonard-Martin T, Lewis JB, Batlle D. Renal pathology patterns in type II diabetes mellitus: relationship with retinopathy. The Collaborative Study Group. Nephrol Dial Transpl. 1998;13:2547–52.

    Article  CAS  Google Scholar 

  17. Sanai T, Okuda S, Yoshimitsu T, Oochi N, Kumagai H, Katafuchi R, Harada A, Chihara J, Abe T, Nakamoto M, Hirakata H, Onoyama K, Iida M. Nodular glomerulosclerosis in patients without any manifestation of diabetes mellitus. Nephrology (Carlton). 2007;12:69–73.

    Article  CAS  Google Scholar 

  18. Bazari H, Guimaraes AR, Kushner YB. Case 20-2012: a 77-year-old man with leg edema, hematuria, and acute renal failure. N Engl J Med. 2012;366:2503–15.

    Article  PubMed  CAS  Google Scholar 

  19. Furuichi K, Hisada Y, Shimizu M, Kitagawa K, Yoshimoto K, Iwata Y, Yokoyama H, Kaneko S, Wada T. Matrix metalloproteinase-2 (MMP-2) and membrane-type 1 MMP (MT1-MMP) affect the remodeling of glomerulosclerosis in diabetic OLETF rats. Nephrol Dial Transpl. 2011;26:3124–31.

    Article  CAS  Google Scholar 

  20. Brosius FC 3rd, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, Harris RC, Kakoki M, Kretzler M, Leiter EH, Levi M, McIndoe RA, Sharma K, Smithies O, Susztak K, Takahashi N, Takahashi T, Animal Models of Diabetic Complications Consortium. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2009;20:2503–12.

    Article  PubMed  Google Scholar 

  21. Inagi R, Yamamoto Y, Nangaku M, Usuda N, Okamato H, Kurokawa K, van Ypersele de Strihou C, Yamamoto H, Miyata T. A severe diabetic nephropathy model with early development of nodule-like lesions induced by megsin overexpression in RAGE/iNOS transgenic mice. Diabetes. 2006;55:356–66.

    Article  PubMed  CAS  Google Scholar 

  22. Kida H, Yoshimura M, Ikeda K, Saitou Y, Noto Y. Pathogenesis of diabetic nephropathy in non-insulin-dependent diabetes mellitus. J Diabetes Complicat. 1991;5:82–3.

    Article  CAS  Google Scholar 

  23. Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ, Natarajan M, Abboud-Werner SL. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Invest. 2008;88:515–28.

    Article  PubMed  CAS  Google Scholar 

  24. Kanetsuna Y, Takahashi K, Nagata M, Gannon MA, Breyer MD, Harris RC, Takahashi T. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am J Pathol. 2007;170:1473–84.

    Article  PubMed  CAS  Google Scholar 

  25. Nakagawa T, Sato W, Glushakova O, Heinig M, Clarke T, Campbell-Thompson M, Yuzawa Y, Atkinson MA, Johnson RJ, Croker B. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J Am Soc Nephrol. 2007;18:539–50.

    Article  PubMed  CAS  Google Scholar 

  26. Usui HK, Shikata K, Sasaki M, Okada S, Matsuda M, Shikata Y, Ogawa D, Kido Y, Nagase R, Yozai K, Ohga S, Tone A, Wada J, Takeya M, Horiuchi S, Kodama T, Makino H. Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes. 2007;56:363–72.

    Article  PubMed  CAS  Google Scholar 

  27. Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Takeda S, Takasawa K, Yoshimura M, Kida H, Kobayashi K, Mukaida N, Naito T, Matsushima K, Yokoyama H. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions in human diabetic nephropathy. Kidney Int. 2000;58:1492–9.

    Article  PubMed  CAS  Google Scholar 

  28. Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, Kokubo S, Kobayashi M, Hara A, Yamahana J, Okumura T, Takasawa K, Takeda S, Yoshimura M, Kida H, Yokoyama H. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis. 2005;45:54–65.

    Article  PubMed  CAS  Google Scholar 

  29. Wada T, Yokoyama H, Furuichi K, Kobayashi K, Harada K, Naruto M, Su S, Akiyama M, Mukaida N, Matsushima K. Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1). FASEB J. 1996;10:1418–25.

    PubMed  CAS  Google Scholar 

  30. Wada T, Sakai N, Sakai Y, Matsushima K, Kaneko S, Furuichi K. Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol. 2011;15:8–13.

    Article  PubMed  Google Scholar 

  31. Wada T, Sakai N, Matsushima K, Kaneko S. Fibrocytes: a new insight into kidney fibrosis. Kidney Int. 2007;72:269–73.

    Article  PubMed  CAS  Google Scholar 

  32. Sakai N, Furuichi K, Shinozaki Y, Yamauchi H, Toyama T, Kitajima S, Okumura T, Kokubo S, Kobayashi M, Takasawa K, Takeda S, Yoshimura M, Kaneko S, Wada T. Fibrocytes are involved in the pathogenesis of human chronic kidney disease. Hum Pathol. 2010;41:672–8.

    Article  PubMed  CAS  Google Scholar 

  33. Makino H, Shikata K, Kushiro M, Hironaka K, Yamasaki Y, Sugimoto H, Ota Z, Araki N, Horiuchi S. Roles of advanced glycation end-products in the progression of diabetic nephropathy. Nephrol Dial Transpl. 1996;11(Suppl 5):76–80.

    Article  CAS  Google Scholar 

  34. Nadarajah R, Milagres R, Dilauro M, Gutsol A, Xiao F, Zimpelmann J, Kennedy C, Wysocki J, Batlle D, Burns KD. Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice. Kidney Int. 2012;82:292–303.

    Article  PubMed  CAS  Google Scholar 

  35. Flaquer M, Franquesa M, Vidal A, Bolaños N, Torras J, Lloberas N, Herrero-Fresneda I, Grinyó JM, Cruzado JM. Hepatocyte growth factor gene therapy enhances infiltration of macrophages and may induce kidney repair in db/db mice as a model of diabetes. Diabetologia. 2012;55:2059–68.

    Article  PubMed  CAS  Google Scholar 

  36. Miyamoto S, Shikata K, Miyasaka K, Okada S, Sasaki M, Kodera R, Hirota D, Kajitani N, Takatsuka T, Kataoka HU, Nishishita S, Sato C, Funakoshi A, Nishimori H, Uchida HA, Ogawa D, Makino H. Cholecystokinin plays a novel protective role in diabetic kidney through anti-inflammatory actions on macrophage: anti-inflammatory effect of cholecystokinin. Diabetes. 2012;61:897–907.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Diabetic Nephropathy Research, and for Diabetic Nephropathy and Nephrosclerosis Research from the Ministry of Health, Labour and Welfare of Japan. TW is a recipient of a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Wada.

About this article

Cite this article

Wada, T., Shimizu, M., Yokoyama, H. et al. Nodular lesions and mesangiolysis in diabetic nephropathy. Clin Exp Nephrol 17, 3–9 (2013). https://doi.org/10.1007/s10157-012-0711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-012-0711-6

Keywords

Navigation