Skip to main content

Advertisement

Log in

Effect of hypoxia on heart rate variability and baroreflex sensitivity during hypoglycemia in type 1 diabetes mellitus

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Patients with type 1 diabetes mellitus exhibit impairments in autonomic and cardiovascular control which are worsened with acute hypoglycemia––thus increasing the risk of adverse cardiovascular events. Hypoxia, as seen with the common comorbidity of sleep apnea, may lead to further autonomic dysfunction and an increased risk of ventricular arrhythmias. Therefore, we hypothesized that heart rate variability (HRV) and baroreflex sensitivity (BRS) would be reduced during hypoglycemia in adults with type 1 diabetes, with a further decline when combined with hypoxia.

Methods

Subjects with type 1 diabetes (n = 13; HbA1c = 7.5 ± 0.3 %, duration of diabetes = 17 ± 5 yrs) completed two 180 min hyperinsulinemic (2 mU/kg TBW/min), hypoglycemic (~3.3 µmol/mL) clamps separated by a minimum of 1 week and randomized to normoxia (SpO2 ~98 %) or hypoxia (SpO2 ~85 %). Heart rate (electrocardiogram) and blood pressure (finger photoplethysmography) were analyzed at baseline and during the hypoglycemic clamp for measures of HRV and spontaneous cardiac BRS (sCBRS).

Results

Hypoglycemia resulted in significant reductions in HRV and sCBRS when compared with baseline levels (main effect of hypoglycemia: p < 0.05). HRV and sCBRS were further impaired during hypoxia (main effect of hypoxia: p < 0.05).

Conclusions

Acute hypoxia worsens hypoglycemia-mediated impairments in autonomic and cardiovascular control in patients with type 1 diabetes and may increase the risk of cardiovascular mortality. These results highlight the potential cumulative dangers of hypoglycemia and hypoxia in this vulnerable population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arauz-Pacheco C, Parrott MA, Raskin P (2002) The treatment of hypertension in adult patients with diabetes. Diabetes Care 25:134–147

    Article  PubMed  Google Scholar 

  2. Banzett RB, Garcia RT, Moosavi SH (2000) Simple contrivance “clamps” end-tidal PCO(2) and PO(2) despite rapid changes in ventilation. J Appl Physiol 88:1597–1600

    CAS  PubMed  Google Scholar 

  3. Bergner DW, Goldberger JJ (2010) Diabetes mellitus and sudden cardiac death: what are the data? Cardiol J 17:117–129

    PubMed  Google Scholar 

  4. Bernardi L, Rosengard-Barlund M, Sandelin A, Makinen VP, Forsblom C, Groop PH (2011) Short-term oxygen administration restores blunted baroreflex sensitivity in patients with type 1 diabetes. Diabetologia 54:2164–2173

    Article  CAS  PubMed  Google Scholar 

  5. Chow E, Bernjak A, Williams S, Fawdry RA, Hibbert S, Freeman J, Sheridan PJ, Heller SR (2014) Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes 63:1738–1747

    Article  CAS  PubMed  Google Scholar 

  6. Cooper VL, Pearson SB, Bowker CM, Elliott MW, Hainsworth R (2005) Interaction of chemoreceptor and baroreceptor reflexes by hypoxia and hypercapnia––a mechanism for promoting hypertension in obstructive sleep apnoea. J Physiol 568:677–687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Duennwald T, Bernardi L, Gordin D, Sandelin A, Syreeni A, Fogarty C, Kyto JP, Gatterer H, Lehto M, Horkko S, Forsblom C, Burtscher M, Groop PH (2013) Effects of a single bout of interval hypoxia on cardiorespiratory control in patients with type 1 diabetes. Diabetes 62:4220–4227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Electrophysiology TFotESoCatNASoPa (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  9. Ewing DJ, Neilson JM, Shapiro CM, Stewart JA, Reid W (1991) Twenty four hour heart rate variability: effects of posture, sleep, and time of day in healthy controls and comparison with bedside tests of autonomic function in diabetic patients. Br Heart J 65:239–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Frattola A, Parati G, Gamba P, Paleari F, Mauri G, Di Rienzo M, Castiglioni P, Mancia G (1997) Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus. Diabetologia 40:1470–1475

    Article  CAS  PubMed  Google Scholar 

  11. Group TDR (1991) Epidemiology of severe hypoglycemia in the diabetes control and complications trial. Am J Med 90:450–459

    Article  Google Scholar 

  12. Halliwill JR, Morgan BJ, Charkoudian N (2003) Peripheral chemoreflex and baroreflex interactions in cardiovascular regulation in humans. J Physiol 552:295–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Homma I, Kageyama S, Nagai T, Taniguchi I, Sakai T, Abe M (1981) Chemosensitivity in patients with diabetic neuropathy. Clin Sci (Lond) 61:599–603

    Article  CAS  Google Scholar 

  14. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262

    Article  CAS  PubMed  Google Scholar 

  15. Koivikko ML, Salmela PI, Airaksinen KE, Tapanainen JS, Ruokonen A, Makikallio TH, Huikuri HV (2005) Effects of sustained insulin-induced hypoglycemia on cardiovascular autonomic regulation in type 1 diabetes. Diabetes 54:744–750

    Article  CAS  PubMed  Google Scholar 

  16. Limberg JK, Farni KE, Taylor JL, Dube S, Basu A, Basu R, Wehrwein EA, Joyner MJ (2014) Autonomic control during acute hypoglycemia in type 1 diabetes mellitus. Clin Auton Res 24(6):275–283

    Article  Google Scholar 

  17. Malpas SC, Maling TJ (1990) Heart-rate variability and cardiac autonomic function in diabetes. Diabetes 39:1177–1181

    Article  CAS  PubMed  Google Scholar 

  18. Manin G, Pons A, Baltzinger P, Moreau F, Iamandi C, Wilhelm JM, Lenoble P, Kessler L, Kessler R (2015) Obstructive sleep apnoea in people with Type 1 diabetes: prevalence and association with micro- and macrovascular complications. Diabet Med 32:90–96

    Article  CAS  PubMed  Google Scholar 

  19. Monahan KD, Leuenberger UA, Ray CA (2006) Effect of repetitive hypoxic apnoeas on baroreflex function in humans. J Physiol 574:605–613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Montserrat JM, Cochrane GM, Wolf C, Picado C, Roca J, Agusti Vidal A (1985) Ventilatory control in diabetes mellitus. Eur J Respir Dis 67:112–117

    CAS  PubMed  Google Scholar 

  21. Neumann C, Martinez D, Schmid H (1995) Nocturnal oxygen desaturation in diabetic patients with severe autonomic neuropathy. Diabetes Res Clin Pract 28:97–102

    Article  CAS  PubMed  Google Scholar 

  22. Ostenson CG, Geelhoed-Duijvestijn P, Lahtela J, Weitgasser R, Markert Jensen M, Pedersen-Bjergaard U (2014) Self-reported non-severe hypoglycaemic events in Europe. Diabet Med 31:92–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Pardal R, Lopez-Barneo J (2002) Low glucose-sensing cells in the carotid body. Nat Neurosci 5:197–198

    Article  CAS  PubMed  Google Scholar 

  24. Parekh B (2009) The mechanism of dead-in-bed syndrome and other sudden unexplained nocturnal deaths. Curr Diabetes Rev 5:210–215

    Article  CAS  PubMed  Google Scholar 

  25. Powell FL, Milsom WK, Mitchell GS (1998) Time domains of the hypoxic ventilatory response. Respir Physiol 112:123–134

    Article  CAS  PubMed  Google Scholar 

  26. Resnick HE, Redline S, Shahar E, Gilpin A, Newman A, Walter R, Ewy GA, Howard BV, Punjabi NM (2003) Diabetes and sleep disturbances: findings from the Sleep Heart Health Study. Diabetes Care 26:702–709

    Article  PubMed  Google Scholar 

  27. Schonauer M, Thomas A, Morbach S, Niebauer J, Schonauer U, Thiele H (2008) Cardiac autonomic diabetic neuropathy. Diab Vasc Dis Res 5:336–344

    Article  PubMed  Google Scholar 

  28. Stecker MM, Stevenson M (2014) Effect of glucose concentration on peripheral nerve and its response to anoxia. Muscle Nerve 49:370–377

    Article  CAS  PubMed  Google Scholar 

  29. Sun TB, Yang CC, Kuo TB (2006) Effect of hyperbaric oxygen on cardiac neural regulation in diabetic individuals with foot complications. Diabet Med 23:360–366

    Article  CAS  PubMed  Google Scholar 

  30. Tekkok SB, Godfraind JM, Krnjevic K (2002) Moderate hypoglycemia aggravates effects of hypoxia in hippocampal slices from diabetic rats. Neuroscience 113:11–21

    Article  CAS  PubMed  Google Scholar 

  31. Wehrwein EA, Curry TB, Basu A, Rizza RA, Basu R, Joyner MJ (2012) Do the carotid bodies modulate hypoglycemic counterregulation and baroreflex control of blood pressure in humans? Adv Exp Med Biol 758:129–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Weston PJ, Panerai RB, McCullough A, McNally PG, James MA, Potter JF, Thurston H, Swales JD (1996) Assessment of baroreceptor-cardiac reflex sensitivity using time domain analysis in patients with IDDM and the relation to left ventricular mass index. Diabetologia 39:1385–1391

    Article  CAS  PubMed  Google Scholar 

  33. Williams JG, Morris AI, Hayter RC, Ogilvie CM (1984) Respiratory responses of diabetics to hypoxia, hypercapnia, and exercise. Thorax 39:529–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ziegler D, Laude D, Akila F, Elghozi JL (2001) Time- and frequency-domain estimation of early diabetic cardiovascular autonomic neuropathy. Clin Auton Res 11:369–376

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the contributions of the nursing and technical staff: Cheryl Shonkwiler, Barbara Norby, Shelly Roberts, Karen Krucker, Sarah Wolhart, Jean Knutson, Brent McConahey, Pamela Reich, Nancy Meyer, Pam Engrav, Christopher Johnson, and Kate Malterer of the Mayo Clinic. In addition, we thank the Clinical Research Unit staff at Mayo Clinic and the Immunochemical Core Laboratory at Mayo Clinic, in particular Hilary Blair. We are deeply indebted to our research participants. We thank Brandon Bucher and Brenton Nelson at AD Instruments for the development of the Spontaneous Cardiac Baroreflex Analysis Program. Funding sources: NIH DK090541 (MJJ, RB), NIH NS32352 (MJJ), NIH T32 DK07352 (JKL), NIH F32 HL120570 (JKL), NIH 1 UL1 RR024150 (Mayo Clinic CTSA, MJJ), and NIH DK29953 (RB).

Conflict of interest

There are no relevant conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline K. Limberg.

Additional information

R. Basu and M. J. Joyner share co-senior authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limberg, J.K., Dube, S., Kuijpers, M. et al. Effect of hypoxia on heart rate variability and baroreflex sensitivity during hypoglycemia in type 1 diabetes mellitus. Clin Auton Res 25, 243–250 (2015). https://doi.org/10.1007/s10286-015-0301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-015-0301-2

Keywords

Navigation