Skip to main content
Log in

Diabetes and apoptosis: lipotoxicity

  • Diabetes and Apoptosis
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Obesity is an established risk factor in the pathogenesis of insulin resistance, type 2 diabetes mellitus and cardiovascular disease; all components that are part of the metabolic syndrome. Traditionally, insulin resistance has been defined in a glucocentric perspective. However, elevated systemic levels of fatty acids are now considered significant contributors towards the pathophysiological aspects associated with the syndrome. An overaccumulation of unoxidized long-chain fatty acids can saturate the storage capacity of adipose tissue, resulting in a lipid ‘spill over’ to non-adipose tissues, such as the liver, muscle, heart, and pancreatic-islets. Under these circumstances, such ectopic lipid deposition can have deleterious effects. The excess lipids are driven into alternative non-oxidative pathways, which result in the formation of reactive lipid moieties that promote metabolically relevant cellular dysfunction (lipotoxicity) and programmed cell-death (lipoapoptosis). Here, we focus on how both of these processes affect metabolically significant cell-types and highlight how lipotoxicity and sequential lipoapoptosis are as major mediators of insulin resistance, diabetes and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

T2DM:

Type 2 diabetes mellitus

CVD:

Cardiovascular disease

TG:

Triglyceride/triacylglycerol

FFA:

Free fatty acid

GLUT4:

Glucose transporter-4

NO:

Nitric oxide

AMPK:

Adenosine monophosphate-activated protein kinase

CoA:

Coenzyme-A

SREBP-1c:

Sterol regulatory element binding protein-1c

PPAR-γ2:

Peroxisome proliferator-activated receptor

ACC:

Acetyl coenzyme A carboxylase

FAS:

Fatty acid synthetase

GPAT:

Glycerol-3-phosphate acyl transferase

CPT-1:

Carnitine palmityl transferase-1

ACO:

Fatty acyl-CoA oxidase

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator-1α

UCP-2:

Uncoupling protein-2

VLDLs:

Very low-density lipoproteins

ROS:

Reactive oxygen species

ER:

Endoplasmic reticulum

SPT-1:

Serine palmitoyl transferase

Bcl2 :

B-cell lymphoma 2

Bad:

Bcl2-antagonist of cell death

Bax:

Bcl2-associated X protein

Bid:

BH3 interacting domain death agonist

Bim:

Bcl2-like 11

NF-κB:

Nuclear factor-κB

iNOS:

Inducible nitric oxide synthase

ACS:

Acyl CoA synthase

ECM:

Extracellular matrix

FAT-ATTAC:

Fat apoptosis through targeted activation of caspase-8

FKBP:

Peptidyl-prolyl cis–trans isomerase

AICAR:

5-Amino 4-imidazolecarboxamide riboside

MCD:

Malonyl CoA decarboxylase

References

  1. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607. doi:10.2337/diabetes.37.12.1595

    Article  PubMed  CAS  Google Scholar 

  2. Randle PJ, Garland PB, Hales CN et al (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789. doi:10.1016/S0140-6736(63)91500-9

    Article  PubMed  CAS  Google Scholar 

  3. McGarry JD (1992) What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258:766–770. doi:10.1126/science.1439783

    Article  PubMed  CAS  Google Scholar 

  4. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176. doi:10.1172/JCI10583

    Article  PubMed  CAS  Google Scholar 

  5. Boden G, Cheung P, Stein TP et al (2002) FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab 283:E12–E19

    PubMed  CAS  Google Scholar 

  6. Charles MA, Eschwege E, Thibult N et al (1997) The role of non-esterified fatty acids in the deterioration of glucose tolerance in caucasian subjects: results of the Paris prospective study. Diabetologia 40:1101–1106. doi:10.1007/s001250050793

    Article  PubMed  CAS  Google Scholar 

  7. Schulz LO, Bennett PH, Ravussin E et al (2006) Effects of traditional and western environments on prevalence of type 2 diabetes in Pima Indians in Mexico and the US. Diabetes Care 29:1866–1871. doi:10.2337/dc06-0138

    Article  PubMed  Google Scholar 

  8. Lee Y, Hirose H, Ohneda M et al (1994) Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci USA 91:10878–10882. doi:10.1073/pnas.91.23.10878

    Article  PubMed  CAS  Google Scholar 

  9. Unger RH (2003) Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab 14:398–403. doi:10.1016/j.tem.2003.09.008

    Article  PubMed  CAS  Google Scholar 

  10. Unger RH, Orci L (2001) Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J 15:312–321. doi:10.1096/fj.00-0590

    Article  PubMed  CAS  Google Scholar 

  11. Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14:353–362

    PubMed  CAS  Google Scholar 

  12. Simha V, Garg A (2006) Lipodystrophy: lessons in lipid and energy metabolism. Curr Opin Lipidol 17:162–169

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432. doi:10.1038/372425a0

    Article  PubMed  CAS  Google Scholar 

  14. Halaas JL, Gajiwala KS, Maffei M et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546. doi:10.1126/science.7624777

    Article  PubMed  CAS  Google Scholar 

  15. Campfield LA, Smith FJ, Guisez Y et al (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549. doi:10.1126/science.7624778

    Article  PubMed  CAS  Google Scholar 

  16. Shimabukuro M, Koyama K, Chen G et al (1997) Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci USA 94:4637–4641. doi:10.1073/pnas.94.9.4637

    Article  PubMed  CAS  Google Scholar 

  17. Wang MY, Koyama K, Shimabukuro M et al (1998) OB-Rb gene transfer to leptin-resistant islets reverses diabetogenic phenotype. Proc Natl Acad Sci USA 95:714–718. doi:10.1073/pnas.95.2.714

    Article  PubMed  CAS  Google Scholar 

  18. Lee Y, Wang MY, Kakuma T et al (2001) Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J Biol Chem 276:5629–5635. doi:10.1074/jbc.M008553200

    Article  PubMed  CAS  Google Scholar 

  19. Zhou YT, Grayburn P, Karim A et al (2000) Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 97:1784–1789. doi:10.1073/pnas.97.4.1784

    Article  PubMed  CAS  Google Scholar 

  20. Muller-Wieland D, Kotzka J (2005) Correction of insulin resistance and the metabolic syndrome. Handb Exp Pharmacol 170:591–617

    Article  PubMed  Google Scholar 

  21. Scherer PE, Williams S, Fogliano M et al (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749. doi:10.1074/jbc.270.45.26746

    Article  PubMed  CAS  Google Scholar 

  22. Kim JY, van de Wall E, Laplante M et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117:2621–2637. doi:10.1172/JCI31021

    Article  PubMed  CAS  Google Scholar 

  23. Combs TP, Wagner JA, Berger J et al (2002) Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization. Endocrinology 143:998–1007. doi:10.1210/en.143.3.998

    Article  PubMed  CAS  Google Scholar 

  24. Wang ZV, Scherer PE (2008) Adiponectin, cardiovascular function, and hypertension. Hypertension 51:8–14. doi:10.1161/HYPERTENSIONAHA.107.099424

    Article  PubMed  CAS  Google Scholar 

  25. Tomas E, Tsao TS, Saha AK et al (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA 99:16309–16313. doi:10.1073/pnas.222657499

    Article  PubMed  CAS  Google Scholar 

  26. Yamauchi T, Kamon J, Waki H et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946. doi:10.1038/90984

    Article  PubMed  CAS  Google Scholar 

  27. Yamauchi T, Kamon J, Minokoshi Y et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295. doi:10.1038/nm788

    Article  PubMed  CAS  Google Scholar 

  28. Brown MS, Goldstein JL (1998) Sterol regulatory element binding proteins (SREBPs): controllers of lipid synthesis and cellular uptake. Nutr Rev 56:S1–S3 discussion S54–75

    Article  PubMed  CAS  Google Scholar 

  29. Wang X, Sato R, Brown MS et al (1994) SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77:53–62. doi:10.1016/0092-8674(94)90234-8

    Article  PubMed  CAS  Google Scholar 

  30. Kakuma T, Wang ZW, Pan W et al (2000) Role of leptin in peroxisome proliferator-activated receptor gamma coactivator-1 expression. Endocrinology 141:4576–4582. doi:10.1210/en.141.12.4576

    Article  PubMed  CAS  Google Scholar 

  31. Zhou YT, Shimabukuro M, Koyama K et al (1997) Induction by leptin of uncoupling protein-2 and enzymes of fatty acid oxidation. Proc Natl Acad Sci USA 94:6386–6390. doi:10.1073/pnas.94.12.6386

    Article  PubMed  CAS  Google Scholar 

  32. Hardie DG, Pan DA (2002) Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30:1064–1070. doi:10.1042/BST0301064

    Article  PubMed  CAS  Google Scholar 

  33. McGarry JD, Mannaerts GP, Foster DW (1977) A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest 60:265–270. doi:10.1172/JCI108764

    Article  PubMed  CAS  Google Scholar 

  34. McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18. doi:10.2337/diabetes.51.1.7

    Article  PubMed  CAS  Google Scholar 

  35. Lee Y, Yu X, Gonzales F et al (2002) PPAR alpha is necessary for the lipopenic action of hyperleptinemia on white adipose and liver tissue. Proc Natl Acad Sci USA 99:11848–11853. doi:10.1073/pnas.182420899

    Article  PubMed  CAS  Google Scholar 

  36. Spiegelman BM (2007) Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp 287:60–63. doi:10.1002/9780470725207.ch5 discussion 63–69

    Article  PubMed  CAS  Google Scholar 

  37. Moitra J, Mason MM, Olive M et al (1998) Life without white fat: a transgenic mouse. Genes Dev 12:3168–3181. doi:10.1101/gad.12.20.3168

    Article  PubMed  CAS  Google Scholar 

  38. Florant GL, Porst H, Peiffer A et al (2004) Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris). J Comp Physiol [B] 174:633–639. doi:10.1007/s00360-004-0454-0

    CAS  Google Scholar 

  39. Mason TM (1998) The role of factors that regulate the synthesis and secretion of very-low-density lipoprotein by hepatocytes. Crit Rev Clin Lab Sci 35:461–487. doi:10.1080/10408369891234246

    Article  PubMed  CAS  Google Scholar 

  40. Shimabukuro M, Zhou YT, Levi M et al (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 95:2498–2502. doi:10.1073/pnas.95.5.2498

    Article  PubMed  CAS  Google Scholar 

  41. Szczepaniak LS, Victor RG, Orci L et al (2007) Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res 101:759–767. doi:10.1161/CIRCRESAHA.107.160457

    Article  PubMed  CAS  Google Scholar 

  42. Unger RH, Zhou YT, Orci L (1999) Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci USA 96:2327–2332. doi:10.1073/pnas.96.5.2327

    Article  PubMed  CAS  Google Scholar 

  43. Unger RH (2005) Longevity, lipotoxicity and leptin: the adipocyte defense against feasting and famine. Biochimie 87:57–64. doi:10.1016/j.biochi.2004.11.014

    Article  PubMed  CAS  Google Scholar 

  44. Zhou YT, Shimabukuro M, Lee Y et al (1998) Enhanced de novo lipogenesis in the leptin-unresponsive pancreatic islets of prediabetic Zucker diabetic fatty rats: role in the pathogenesis of lipotoxic diabetes. Diabetes 47:1904–1908. doi:10.2337/diabetes.47.12.1904

    Article  PubMed  CAS  Google Scholar 

  45. Quon MJ, Butte AJ, Zarnowski MJ et al (1994) Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J Biol Chem 269:27920–27924

    PubMed  CAS  Google Scholar 

  46. McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244:1–14. doi:10.1111/j.1432-1033.1997.00001.x

    Article  PubMed  CAS  Google Scholar 

  47. Summers SA, Garza LA, Zhou H et al (1998) Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 18:5457–5464

    PubMed  CAS  Google Scholar 

  48. Robertson RP, Harmon JS (2006) Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med 41:177–184. doi:10.1016/j.freeradbiomed.2005.04.030

    Article  PubMed  CAS  Google Scholar 

  49. Maechler P, Jornot L, Wollheim CB (1999) Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem 274:27905–27913. doi:10.1074/jbc.274.39.27905

    Article  PubMed  CAS  Google Scholar 

  50. Tiedge M, Lortz S, Drinkgern J et al (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742. doi:10.2337/diabetes.46.11.1733

    Article  PubMed  CAS  Google Scholar 

  51. Unger RH, Zhou YT (2001) Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes 50(Suppl 1):S118–S121. doi:10.2337/diabetes.50.2007.S118

    Article  PubMed  CAS  Google Scholar 

  52. Ohneda M, Inman LR, Unger RH (1995) Caloric restriction in obese pre-diabetic rats prevents beta-cell depletion, loss of beta-cell GLUT 2 and glucose incompetence. Diabetologia 38:173–179. doi:10.1007/BF00400091

    Article  PubMed  CAS  Google Scholar 

  53. Ribaux PG, Iynedjian PB (2003) Analysis of the role of protein kinase B (cAKT) in insulin-dependent induction of glucokinase and sterol regulatory element-binding protein 1 (SREBP1) mRNAs in hepatocytes. Biochem J 376:697–705. doi:10.1042/BJ20031287

    Article  PubMed  CAS  Google Scholar 

  54. Koshkin V, Wang X, Scherer PE et al (2003) Mitochondrial functional state in clonal pancreatic beta-cells exposed to free fatty acids. J Biol Chem 278:19709–19715. doi:10.1074/jbc.M209709200

    Article  PubMed  CAS  Google Scholar 

  55. Carlsson C, Borg LA, Welsh N (1999) Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology 140:3422–3428. doi:10.1210/en.140.8.3422

    Article  PubMed  CAS  Google Scholar 

  56. Rakatzi I, Mueller H, Ritzeler O et al (2004) Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1. Diabetologia 47:249–258. doi:10.1007/s00125-003-1293-3

    Article  PubMed  CAS  Google Scholar 

  57. Gu W, Li X, Liu C et al (2006) Globular adiponectin augments insulin secretion from pancreatic islet beta cells at high glucose concentrations. Endocrine 30:217–221. doi:10.1385/ENDO:30:2:217

    Article  PubMed  CAS  Google Scholar 

  58. Huypens P, Moens K, Heimberg H et al (2005) Adiponectin-mediated stimulation of AMP-activated protein kinase (AMPK) in pancreatic beta cells. Life Sci 77:1273–1282. doi:10.1016/j.lfs.2005.03.008

    Article  PubMed  CAS  Google Scholar 

  59. Staiger K, Stefan N, Staiger H et al (2005) Adiponectin is functionally active in human islets but does not affect insulin secretory function or beta-cell lipoapoptosis. J Clin Endocrinol Metab 90:6707–6713. doi:10.1210/jc.2005-0467

    Article  PubMed  CAS  Google Scholar 

  60. Huypens PR (2007) Leptin and adiponectin regulate compensatory beta cell growth in accordance to overweight. Med Hypotheses 68:1134–1137. doi:10.1016/j.mehy.2006.09.046

    Article  PubMed  CAS  Google Scholar 

  61. Shimomura I, Bashmakov Y, Ikemoto S et al (1999) Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:13656–13661. doi:10.1073/pnas.96.24.13656

    Article  PubMed  CAS  Google Scholar 

  62. Shimomura I, Hammer RE, Ikemoto S et al (1999) Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401:73–76. doi:10.1038/43448

    Article  PubMed  CAS  Google Scholar 

  63. Ma K, Cabrero A, Saha PK et al (2002) Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem 277:34658–34661. doi:10.1074/jbc.C200362200

    Article  PubMed  CAS  Google Scholar 

  64. Wang MY, Orci L, Ravazzola M et al (2005) Fat storage in adipocytes requires inactivation of leptin’s paracrine activity: implications for treatment of human obesity. Proc Natl Acad Sci USA 102:18011–18016. doi:10.1073/pnas.0509001102

    Article  PubMed  CAS  Google Scholar 

  65. Chiu HC, Kovacs A, Ford DA et al (2001) A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 107:813–822. doi:10.1172/JCI10947

    Article  PubMed  CAS  Google Scholar 

  66. Obeid LM, Linardic CM, Karolak LA et al (1993) Programmed cell death induced by ceramide. Science 259:1769–1771. doi:10.1126/science.8456305

    Article  PubMed  CAS  Google Scholar 

  67. Karaskov E, Scott C, Zhang L et al (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147:3398–3407. doi:10.1210/en.2005-1494

    Article  PubMed  CAS  Google Scholar 

  68. Shimabukuro M, Higa M, Zhou YT et al (1998) Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem 273:32487–32490. doi:10.1074/jbc.273.49.32487

    Article  PubMed  CAS  Google Scholar 

  69. Weiss B, Stoffel W (1997) Human and murine serine-palmitoyl-CoA transferase—cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem 249:239–247. doi:10.1111/j.1432-1033.1997.00239.x

    Article  PubMed  CAS  Google Scholar 

  70. Maedler K, Oberholzer J, Bucher P et al (2003) Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes 52:726–733. doi:10.2337/diabetes.52.3.726

    Article  PubMed  CAS  Google Scholar 

  71. Kulik G, Klippel A, Weber MJ (1997) Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 17:1595–1606

    PubMed  CAS  Google Scholar 

  72. Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29:381–402. doi:10.1210/er.2007-0025

    Article  PubMed  CAS  Google Scholar 

  73. Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241. doi:10.1016/S0092-8674(00)80405-5

    Article  PubMed  CAS  Google Scholar 

  74. El-Assaad W, Buteau J, Peyot ML et al (2003) Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 144:4154–4163. doi:10.1210/en.2003-0410

    Article  PubMed  CAS  Google Scholar 

  75. Briaud I, Harmon JS, Kelpe CL et al (2001) Lipotoxicity of the pancreatic beta-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes 50:315–321. doi:10.2337/diabetes.50.2.315

    Article  PubMed  CAS  Google Scholar 

  76. Shimabukuro M, Ohneda M, Lee Y et al (1997) Role of nitric oxide in obesity-induced beta cell disease. J Clin Invest 100:290–295. doi:10.1172/JCI119534

    Article  PubMed  CAS  Google Scholar 

  77. Schonfeld P, Wojtczak L (2007) Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim Biophys Acta 1767:1032–1040. doi:10.1016/j.bbabio.2007.04.005

    Article  PubMed  CAS  Google Scholar 

  78. Gudz TI, Tserng KY, Hoppel CL (1997) Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 272:24154–24158. doi:10.1074/jbc.272.39.24154

    Article  PubMed  CAS  Google Scholar 

  79. Pi J, Bai Y, Zhang Q et al (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791. doi:10.2337/db06-1601

    Article  PubMed  CAS  Google Scholar 

  80. Cnop M, Welsh N, Jonas JC et al (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107. doi:10.2337/diabetes.54.suppl_2.S97

    Article  PubMed  CAS  Google Scholar 

  81. Lameloise N, Muzzin P, Prentki M et al (2001) Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes 50:803–809. doi:10.2337/diabetes.50.4.803

    Article  PubMed  CAS  Google Scholar 

  82. Joseph JW, Koshkin V, Saleh MC et al (2004) Free fatty acid-induced beta-cell defects are dependent on uncoupling protein 2 expression. J Biol Chem 279:51049–51056. doi:10.1074/jbc.M409189200

    Article  PubMed  CAS  Google Scholar 

  83. Shimabukuro M, Wang MY, Zhou YT et al (1998) Protection against lipoapoptosis of beta cells through leptin-dependent maintenance of Bcl-2 expression. Proc Natl Acad Sci USA 95:9558–9561. doi:10.1073/pnas.95.16.9558

    Article  PubMed  CAS  Google Scholar 

  84. Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250. doi:10.1038/nm1116

    Article  PubMed  CAS  Google Scholar 

  85. Park TS, Hu Y, Noh HL et al (2008) Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res 49:2101–2112. doi:10.1194/jlr.M800147-JLR200

    Article  PubMed  CAS  Google Scholar 

  86. Hickson-Bick DL, Buja LM, McMillin JB (2000) Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J Mol Cell Cardiol 32:511–519. doi:10.1006/jmcc.1999.1098

    Article  PubMed  CAS  Google Scholar 

  87. Sharma S, Adrogue JV, Golfman L et al (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 18:1692–1700. doi:10.1096/fj.04-2263com

    Article  PubMed  CAS  Google Scholar 

  88. Kankaanpaa M, Lehto HR, Parkka JP et al (2006) Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels. J Clin Endocrinol Metab 91:4689–4695. doi:10.1210/jc.2006-0584

    Article  PubMed  CAS  Google Scholar 

  89. Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787. doi:10.1038/nature06902

    Article  PubMed  CAS  Google Scholar 

  90. Khan T, Muise ES, Iyengar P et al. (2009) Metabolic dysregulation and adipose tissue fibrosis: the role of collagen VI. Mol Cell Biol 29:1575–1591

    Article  PubMed  CAS  Google Scholar 

  91. Demeulemeester D, Collen D, Lijnen HR (2005) Effect of matrix metalloproteinase inhibition on adipose tissue development. Biochem Biophys Res Commun 329:105–110. doi:10.1016/j.bbrc.2005.01.103

    Article  PubMed  CAS  Google Scholar 

  92. Strissel KJ, Stancheva Z, Miyoshi H et al (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56:2910–2918. doi:10.2337/db07-0767

    Article  PubMed  CAS  Google Scholar 

  93. Duffield JS (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 104:27–38. doi:10.1042/CS20020240

    Article  CAS  Google Scholar 

  94. Pajvani UB, Trujillo ME, Combs TP et al (2005) Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat Med 11:797–803. doi:10.1038/nm1262

    Article  PubMed  CAS  Google Scholar 

  95. Saha AK, Ruderman NB (2003) Malonyl-CoA and AMP-activated protein kinase: an expanding partnership. Mol Cell Biochem 253:65–70. doi:10.1023/A:1026053302036

    Article  PubMed  CAS  Google Scholar 

  96. Higa M, Zhou YT, Ravazzola M et al (1999) Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci USA 96:11513–11518. doi:10.1073/pnas.96.20.11513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We kindly thank Kate McCorkle for assistance with the figures. Our research is supported by NIH grants R01-DK55758 and R01-CA112023 (PES) and a JDRF post-doctoral fellowship 3-2008-130 (CMK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp E. Scherer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusminski, C.M., Shetty, S., Orci, L. et al. Diabetes and apoptosis: lipotoxicity. Apoptosis 14, 1484–1495 (2009). https://doi.org/10.1007/s10495-009-0352-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0352-8

Keywords

Navigation