Skip to main content
Log in

Effects of common anesthetics on eye movement and electroretinogram

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

High-resolution magnetic resonance imaging (MRI) provides non-invasive images of retinal anatomy, physiology, and function with depth-resolved laminar resolution. Eye movement and drift, however, could limit high spatial resolution imaging, and anesthetics that minimize eye movement could significantly attenuate retinal function. The aim of this study was to determine the optimal anesthetic preparations to minimize eye movement and maximize visual-evoked retinal response in rats. Eye movements were examined by imaging of the cornea with a charge-coupled device (CCD) camera under isoflurane, urethane, ketamine/xylazine, and propofol anesthesia at typical dosages in rats. Combination of the paralytic pancuronium bromide with isoflurane or ketamine/xylazine anesthesia was also examined for the eye movement studies. Visual-evoked retinal responses were evaluated using full-field electroretinography (ERG) under isoflurane, ketamine/xylazine, urethane, and ketamine/xylazine + pancuronium anesthesia in rats. The degree of eye movement, measured as displacement per unit time, was the smallest under 1% isoflurane + pancuronium anesthesia. The ketamine/xylazine groups showed larger dark-adapted ERG a- and b-waves than other anesthetics tested. The isoflurane group showed the shortest b-wave implicit times. Photopic ERGs in the ketamine/xylazine groups showed the largest b-waves with the isoflurane group showing slightly shorter implicit times at the higher flash intensities. Oscillatory potentials revealed an early peak in the isoflurane group compared with ketamine/xylazine and urethane groups. Pancuronium did not affect the a- and b-wave, but did increase oscillatory potential amplitudes. Compared with the other anesthetics tested here, ketamine/xylazine + pancuronium was the best combination to minimize eye movement and maximize retinal function. These findings should set the stage for further development and application of high-resolution functional imaging techniques, such as MRI, to study retinal anatomy, physiology, and function in anesthetized rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Granit R (1933) The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiol 77(3):207–239

    PubMed  CAS  Google Scholar 

  2. Raitta C, Karhunen U, Seppalainen AM, Naukkarinen M (1979) Changes in the electroretinogram and visual evoked potentials during general anaesthesia. Albrecht Von Graefes Arch Klin Exp Ophthalmol 211(2):139–144

    Article  PubMed  CAS  Google Scholar 

  3. Tashiro C, Muranishi R, Gomyo I, Mashimo T, Tomi K, Yoshiya I (1986) Electroretinogram as a possible monitor of anesthetic depth. Graefes Arch Clin Exp Ophthalmol 224(5):473–476

    Article  PubMed  CAS  Google Scholar 

  4. Lin SL, Shiu WC, Liu PC, Cheng FP, Lin YC, Wang WS (2009) The effects of different anesthetic agents on short electroretinography protocol in dogs. J Vet Med Sci 71(6):763–768

    Article  PubMed  Google Scholar 

  5. Tremblay F, Parkinson JE (2003) Alteration of electroretinographic recordings when performed under sedation or halogenate anesthesia in a pediatric population. Doc Ophthalmol 107(3):271–279

    Article  PubMed  Google Scholar 

  6. Nair G, Duong TQ (2004) Echo-planar BOLD fMRI of mice on a narrow-bore 9.4 T magnet. Magn Reson Med 52(2):430–434

    Article  PubMed  Google Scholar 

  7. Sandalon S, Ofri R (2009) The effect of topical anesthesia on the rat electroretinogram. Doc Ophthalmol 118(2):101–108

    Article  PubMed  Google Scholar 

  8. Gao F, Mapleson WW, Vickers MD (1991) Effect of sub-anaesthetic infusions of propofol on peak velocity of saccadic eye movements. Eur J Anaesthesiol 8(4):267–276

    PubMed  CAS  Google Scholar 

  9. Gao F, Marshall RW, Vickers MD (1991) Effect of low concentrations of nitrous oxide and isoflurane on peak velocity of saccadic eye movements. Br J Anaesth 66(2):179–184

    Article  PubMed  CAS  Google Scholar 

  10. Aschoff JC (1968) The effect of diazepam (Valium) on the saccadic eye movements in man. Arch Psychiatr Nervenkr 211(4):325–332

    Article  PubMed  CAS  Google Scholar 

  11. Meier RK, Dieringer N (1993) The role of compensatory eye and head movements in the rat for image stabilization and gaze orientation. Exp Brain Res 96(1):54–64

    PubMed  CAS  Google Scholar 

  12. Dellepiane M, Mora R, Salami A (2007) Vestibular and optokinetic nystagmus in ketamine-anesthetized rabbits. Int Tinnitus J 13(1):15–20

    PubMed  CAS  Google Scholar 

  13. Leopold DA, Plettenberg HK, Logothetis NK (2002) Visual processing in the ketamine-anesthetized monkey. Optokinetic and blood oxygenation level-dependent responses. Exp Brain Res 143(3):359–372

    Article  PubMed  CAS  Google Scholar 

  14. Laborit G, Angiboust R, Papin JP (1977) A study of eye movement for assessing recovery from anaesthesia. Br J Anaesth 49(8):805–810

    Article  PubMed  CAS  Google Scholar 

  15. Power C, Crowe C, Higgins P, Moriarty DC (1998) Anaesthetic depth at induction. An evaluation using clinical eye signs and EEG polysomnography. Anaesthesia 53(8):736–743

    Article  PubMed  CAS  Google Scholar 

  16. Yoshizumi J, Marshall RW, Vickers MD (1991) Effects of low concentrations of cyclopropane and halothane on peak velocity of saccadic eye movements. Br J Anaesth 67(6):735–740

    Article  PubMed  CAS  Google Scholar 

  17. Brown CH, Green DG (1984) Rod saturation in b-wave of the rat electroretinogram under two different anesthetics. Vision Res 24(1):87–90

    Article  PubMed  CAS  Google Scholar 

  18. Tanskanen P, Kylma T, Kommonen B, Karhunen U (1996) Propofol influences the electroretinogram to a lesser degree than thiopentone. Acta Anaesthesiol Scand 40(4):480–485

    Article  PubMed  CAS  Google Scholar 

  19. Chaudhary V, Hansen R, Lindgren H, Fulton A (2003) Effects of telazol and nembutal on retinal responses. Doc Ophthalmol 107(1):45–51

    Article  PubMed  Google Scholar 

  20. Takata I, Adachi E, Chiba J (1982) Influence of fluothane anesthesia on the human ERG. Nippon Ganka Gakkai Zasshi 86(12):2166–2171

    PubMed  CAS  Google Scholar 

  21. Grinvald A, Frostig RD, Lieke E, Hildesheim R (1988) Optical imaging of neuronal activity. Physiol Rev 68(4):1285–1366

    PubMed  CAS  Google Scholar 

  22. Tsunoda K, Oguchi Y, Hanazono G, Tanifuji M (2004) Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging. Invest Ophthalmol Vis Sci 45(10):3820–3826

    Article  PubMed  Google Scholar 

  23. Abramoff MD, Kwon YH, Ts’o D, Soliz P, Zimmerman B, Pokorny J, Kardon R (2006) Visual stimulus-induced changes in human near-infrared fundus reflectance. Invest Ophthalmol Vis Sci 47(2):715–721

    Article  PubMed  Google Scholar 

  24. Jonnal RS, Rha J, Zhang Y, Cense B, Gao W, Miller DT (2007) In vivo functional imaging of human cone photoreceptors. Opt Express 15(24):16141–16160

    Article  Google Scholar 

  25. Duong TQ, Ngan SC, Ugurbil K, Kim SG (2002) Functional magnetic resonance imaging of the retina. Invest Ophthalmol Vis Sci 43(4):1176–1181

    PubMed  Google Scholar 

  26. Cheng H, Nair G, Walker TA, Kim MK, Pardue MT, Thule PM, Olson DE, Duong TQ (2006) Structural and functional MRI reveals multiple retinal layers. Proc Natl Acad Sci USA 103(46):17525–17530

    Article  PubMed  CAS  Google Scholar 

  27. De La Garza B, Li G, Muir E, Shih YY, Duong TQ (2011) BOLD fMRI of visual stimulation in the rat retina at 11.7 Tesla. NMR Biomed 24:188–193

    Article  PubMed  Google Scholar 

  28. Shih YY, De La Garza BH, Muir ER, Rogers WE, Harrison JM, Kiel JW, Duong TQ (2011, in press) Lamina-specific functional MRI of retinal and choroidal responses to visual stimuli. Invest Ophthalmol Vis Sci

  29. Zhang Y, Peng Q, Kiel JW, Rosende CA, Duong TQ (2011) Magnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina. Invest Ophthalmol Vis Sci 52(1):286–291

    Article  PubMed  Google Scholar 

  30. Nair G, Tanaka Y, Kim M, Olson DE, Thule PM, Pardue MT, Duong TQ (2011) MRI reveals differential regulation of retinal and choroidal blood volumes in rat retina. Neuroimage 54:1063–1069

    Article  PubMed  Google Scholar 

  31. Muir ER, Duong TQ (2011) MRI of retinal and choroid blood flow with laminar resolution. NMR Biomed 24:216–223

    Article  PubMed  Google Scholar 

  32. Li Y, Cheng H, Duong TQ (2008) Blood-flow magnetic resonance imaging of the retina. Neuroimage 39:1744–1751

    Article  PubMed  Google Scholar 

  33. Li Y, Cheng H, Shen Q, Kim M, Thule PM, Olson DE, Pardue MT, Duong TQ (2009) Blood-flow magnetic resonance imaging of retinal degeneration. Invest Ophthalmol Vis Sci 50:1824–1830

    Article  PubMed  Google Scholar 

  34. Peng Q, Zhang Y, Oscar San Emeterio Nateras O, van Osch MJP, Duong TQ (2010, in press) Magnetic resonance imaging of blood flow of the human retina. Magn Reson Med

  35. Bizheva K, Pflug R, Hermann B, Povazay B, Sattmann H, Qiu P, Anger E, Reitsamer H, Popov S, Taylor JR, Unterhuber A, Ahnelt P, Drexler W (2006) Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci USA 103(13):5066–5071

    Article  PubMed  CAS  Google Scholar 

  36. Yao XC, Yamauchi A, Perry B, George JS (2005) Rapid optical coherence tomography and recording functional scattering changes from activated frog retina. Appl Opt 44(11):2019–2023

    Article  PubMed  Google Scholar 

  37. Srinivasan VJ, Chen Y, Duker JS, Fujimoto JG (2009) In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT. Opt Express 17(5):3861–3877

    Article  PubMed  CAS  Google Scholar 

  38. Pardue MT, Phillips MJ, Yin H, Sippy BD, Webb-Wood S, Chow AY, Ball SL (2005) Neuroprotective effect of subretinal implants in the RCS rat. Invest Ophthalmol Vis Sci 46(2):674–682

    Article  PubMed  Google Scholar 

  39. Pardue MT, Phillips MJ, Yin H, Fernandes A, Cheng Y, Chow AY, Ball SL (2005) Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J Neural Eng 2(1):39–47

    Article  Google Scholar 

  40. Yoshizumi J, Marshall RW, Sanders LD, Vickers MD (1993) Effects of small concentrations of isoflurane on some psychometric measurements. Br J Anaesth 71(6):839–844

    Article  PubMed  CAS  Google Scholar 

  41. Wade JG, Stevens WC (1981) Isoflurane: an anesthetic for the eighties? Anesth Analg 60(9):666–682

    Article  PubMed  CAS  Google Scholar 

  42. Woodward WR, Choi D, Grose J, Malmin B, Hurst S, Pang J, Weleber RG, Pillers DA (2007) Isoflurane is an effective alternative to ketamine/xylazine/acepromazine as an anesthetic agent for the mouse electroretinogram. Doc Ophthalmol 115(3):187–201

    Article  PubMed  Google Scholar 

  43. Jonsson Fagerlund M, Dabrowski M, Eriksson LI (2009) Pharmacological characteristics of the inhibition of nondepolarizing neuromuscular blocking agents at human adult muscle nicotinic acetylcholine receptor. Anesthesiology 110(6):1244–1252

    Article  PubMed  Google Scholar 

  44. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44(1):162–167

    Article  PubMed  CAS  Google Scholar 

  45. Jinks SL, Dominguez CL, Antognini JF (2005) Drastic decrease in isoflurane minimum alveolar concentration and limb movement forces after thoracic spinal cooling and chronic spinal transection in rats. Anesthesiology 102(3):624–632

    Article  PubMed  Google Scholar 

  46. Vahle-Hinz C, Detsch O, Hackner C, Kochs E (2007) Corresponding minimum alveolar concentrations of isoflurane and isoflurane/nitrous oxide have divergent effects on thalamic nociceptive signalling. Br J Anaesth 98(2):228–235

    Article  PubMed  CAS  Google Scholar 

  47. Wixson S, Smiler I (1997) Anesthesia and Analgesia in Laboratory Animals. Academic Press, NY

    Google Scholar 

  48. Sanders RD, Patel N, Hossain M, Ma D, Maze M (2005) Isoflurane exerts antinociceptive and hypnotic properties at all ages in Fischer rats. Br J Anaesth 95(3):393–399

    Article  PubMed  CAS  Google Scholar 

  49. Jevtovic-Todorovic V, Benshoff N, Olney JW (2000) Ketamine potentiates cerebrocortical damage induced by the common anaesthetic agent nitrous oxide in adult rats. Br J Pharmacol 130(7):1692–1698

    Article  PubMed  CAS  Google Scholar 

  50. Pekoe GM, Smith DJ (1982) The involvement of opiate and monoaminergic neuronal systems in the analgesic effects of ketamine. Pain 12(1):57–73

    Article  PubMed  CAS  Google Scholar 

  51. Peduto VA, Concas A, Santoro G, Biggio G, Gessa GL (1991) Biochemical and electrophysiologic evidence that propofol enhances GABAergic transmission in the rat brain. Anesthesiology 75(6):1000–1009

    Article  PubMed  CAS  Google Scholar 

  52. Flecknell P (1987) Laboratory Animal Anesthesia. Accademic Press, London

    Google Scholar 

  53. Penn RD, Hagins WA (1969) Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223(5202):201–204

    Article  PubMed  CAS  Google Scholar 

  54. Pugh EN Jr, Falsini B, Lyubarsky AL (1998) The origins of the major rod-and cone- driven components of the rodent electroretinogram and the effect of age and light-rearing history on the magnitude of these components. In: TA Williams TP (ed) Photostasis and related phenomena. Plenum Press, New York, pp 93–128

    Google Scholar 

  55. Hood DC, Birch DG (1990) A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis Neurosci 5(4):379–387

    Article  PubMed  CAS  Google Scholar 

  56. Robson JG, Frishman LJ (1998) Dissecting the dark-adapted electroretinogram. Doc Ophthalmol 95(3–4):187–215

    Article  PubMed  Google Scholar 

  57. Robson JG, Frishman LJ (1995) Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 12(5):837–850

    Article  PubMed  CAS  Google Scholar 

  58. Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20(15):5733–5740

    PubMed  CAS  Google Scholar 

  59. Maggi CA, Meli A (1986) Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 1: general considerations. Experientia 42(2):109–114

    Article  PubMed  CAS  Google Scholar 

  60. Maggi CA, Meli A (1986) Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 2: cardiovascular system. Experientia 42(3):292–297

    Article  PubMed  CAS  Google Scholar 

  61. Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17(4):485–521

    Article  PubMed  CAS  Google Scholar 

  62. Wenningmann I, Dilger JP (2001) The kinetics of inhibition of nicotinic acetylcholine receptors by (+)-tubocurarine and pancuronium. Mol Pharmacol 60(4):790–796

    PubMed  CAS  Google Scholar 

  63. Mojumder DK, Wensel TG (2010) Topical mydriatics affect light-evoked retinal responses in anesthetized mice. Invest Ophthalmol Vis Sci 51(1):567–576

    Article  PubMed  Google Scholar 

  64. Duong TQ, Muir ER (2009) Magnetic resonance imaging of the retina. Jpn J Ophthalmol 53(4):352–367

    Article  PubMed  Google Scholar 

  65. Duong TQ, Pardue MT, Thule PM, Olson DE, Cheng H, Nair G, Li Y, Kim M, Zhang X, Shen Q (2008) Layer-specific anatomical, physiological and functional MRI of the retina. NMR Biomed 21(9):978–996

    Google Scholar 

  66. TQ Duong (2011) Magnetic resonance imaging of the retina: a brief historical and future perspective. Saudi J Ophthalmology 25:137–143

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH/NEI (R01 EY014211 and EY018855 to TQD) and MERIT awards from the Department of Veterans Affairs (TQD, MTP, DEO). We also thank Research to Prevent Blindness; NEI (P30EY006360); and Rehabilitation, Research and Development Service, Department of Veterans Affairs for their supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Machelle T. Pardue or Timothy Q. Duong.

Additional information

Govind Nair and Moon Kim contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, G., Kim, M., Nagaoka, T. et al. Effects of common anesthetics on eye movement and electroretinogram. Doc Ophthalmol 122, 163–176 (2011). https://doi.org/10.1007/s10633-011-9271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-011-9271-4

Keywords

Navigation