Skip to main content

Advertisement

Log in

Spatio–temporal VEGF and PDGF Delivery Patterns Blood Vessel Formation and Maturation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Biological mechanisms of tissue regeneration are often complex, involving the tightly coordinated spatial and temporal presentation of multiple factors. We investigated whether spatially compartmentalized and sequential delivery of factors can be used to pattern new blood vessel formation.

Materials and Methods

A porous bi-layered poly(lactide–co-glycolide) (PLG) scaffold system was used to locally present vascular endothelial growth factor (VEGF) alone in one spatial region, and sequentially deliver VEGF and platelet-derived growth factor (PDGF) in an adjacent region. Scaffolds were implanted in severely ischemic hindlimbs of SCID mice for 2 and 6 weeks, and new vessel formation was quantified within the scaffolds.

Results

In the compartment delivering a high dose of VEGF alone, a high density of small, immature blood vessels was observed at 2 weeks. Sequential delivery of VEGF and PDGF led to a slightly lower blood vessel density, but vessel size and maturity were significantly enhanced. Results were similar at 6 weeks, with continued remodeling of vessels in the VEGF and PDGF layer towards increased size and maturation.

Conclusions

Spatially localizing and temporally controlling growth factor presentation for angiogenesis can create spatially organized tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Coultas, K. Chawengsaksophak, and J. Rossant. Endothelial cells and VEGF in vascular development. Nature 438:937–945 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88:873–884 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. A, Eichmann, F. Le Noble, M. Autiero, and P. Carmeliet. Guidance of vascular and neural network formation. Curr. Opin. Neurobiol. 15:108–115 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash. Vascular-specific growth factors and blood vessel formation. Nature 407:242–248 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. E. M. Conway, D. Collen, and P. Carmeliet. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49:507–521 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. C. Ruhrberg. Growing and shaping the vascular tree: multiple roles for VEGF. BioEssays 25:1052–1060 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Y. Dor, V. Djonov, and E. Keshet. Making vascular networks in the adult: branching morphogenesis without a roadmap. Trends Cell Biol. 13:131–136 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. T. Boontheekul, and D. J. Mooney. Protein-based signaling systems in tissue engineering. Curr. Opin. Biotechnol. 14:559–565 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. R. R. Chen, and D. J. Mooney. Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res. 20:1103–1112 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. P. G. Campbell, E. D. Miller, G. W. Fisher, L. M. Walker, and L. E. Weiss. Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials 26:6762–6770 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. L. N. Luong, S. I. Hong, R. J. Patel, M. E. Outslay, and D. H. Kohn. Spatial control of protein within biomimetically nucleated mineral. Biomaterials 27:1175–1186 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. S. M. Peirce, R. J. Price, and T. C. Skalak. Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1. Am. J. Physiol. Heart Circ. Physiol. 286:H918–925 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. M. C. Peters, P. J. Polverini, and D. J. Mooney. Engineering vascular networks in porous polymer matrices. J. Biomed. Mater. Res. 60:668–678 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. Q. Sun, R. R. Chen, Y. Shen, D. J. Mooney, S. Rajagopalan, and P. M. Grossman. Sustained vascular endothelial growth factor delivery enhances angiogenesis and perfusion in ischemic hind limb. Pharm. Res. 22:1110–1116 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, and R. Langer. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm. Res. 8:713–720 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. L. D. Harris, B. S. Kim, and D. J. Mooney. Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 42:396–402 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. W. M. Saltzman. Drug Delivery: Engineering Principles for Drug Therapy. (eds.). Oxford University Press, London, UK, 2001.

  19. R. B. Bird. Transport Phenomena. (eds.). Wiley, New York, 2001.

  20. R. Bird, W. Stewart, and E. Lightfoot. Transport Phenomena. (eds.). Wiley, New York, 2002.

  21. M. C. Peters, B. C. Isenberg, J. A. Rowley, and D. J. Mooney. Release from alginate enhances the biological activity of vascular endothelial growth factor. J. Biomater. Sci. Polym. Ed. 9:1267–1278 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. R. R. Chen, and D. J. Mooney. Host immune competence and local ischemia affects the functionality of engineered vasculature. Microcirculation 14(2) (2007)

  23. E. Stabile, MS. Burnett, C. Watkins, T. Kinnaird, A. Bachis, A. la Sala, J. M. Miller, M. Shou, S. E. Epstein, and S. Fuchs. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108:205–210 (2003).

    Article  PubMed  Google Scholar 

  24. T. Couffinhal, M. Silver, L. P. Zheng, M. Kearney, B. Witzenbichler, and J. M. Isner. Mouse model of angiogenesis. Am. J. Pathol. 152:1667–1679 (1998).

    PubMed  CAS  Google Scholar 

  25. K. K. Hirschi, S. A. Rohovsky, L. H. Beck, S. R. Smith, and P. A. D’Amore. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ. Res. 84:298–305 (1999).

    PubMed  CAS  Google Scholar 

  26. Y. C. Huang, D. Kaigler, K. G. Rice, P. H. Krebsbach, and D. J. Mooney. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J. Bone Miner. Res. 20:848–857 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the NIH (R01 HL069957), and the Biological Resources Branch of the National Cancer Institute for providing VEGF for our studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Mooney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R.R., Silva, E.A., Yuen, W.W. et al. Spatio–temporal VEGF and PDGF Delivery Patterns Blood Vessel Formation and Maturation. Pharm Res 24, 258–264 (2007). https://doi.org/10.1007/s11095-006-9173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9173-4

Key words

Navigation