Skip to main content

Advertisement

Log in

The Placenta and Gestational Diabetes Mellitus

  • Diabetes and Pregnancy (CJ Homko, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

By its location between maternal and fetal bloodstreams the human placenta not only handles the materno-fetal transport of nutrients and gases, but may also be exposed to intrauterine conditions adversely affecting placental and fetal development. Such adverse conditions exist in pregnancies complicated by gestational diabetes mellitus (GDM), and have been associated with alterations in placental anatomy and physiology. These alterations are mainly based on changes on the micro-anatomical and/or even molecular level including aberrant villous vascularization, a disbalance of vasoactive molecules, and enhanced oxidative stress. The consequence thereof may be impaired fetal oxygenation and changes in transplacental nutrient supply. Although transplacental glucose flux is flow limited and independent of glucose transporter availability, transport of essential and nonessential amino acids and expression of genes involved in lipid transport and metabolism are significantly affected by GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet Med. 2004;21:103–13.

    Article  PubMed  CAS  Google Scholar 

  2. Radaelli T, Varastehpour A, Catalano P, et al. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003;52:2951–8.

    Article  PubMed  CAS  Google Scholar 

  3. Segregur J, Bukovic D, Milinovic D, et al. Fetal macrosomia in pregnant women with gestational diabetes. Coll Antropol. 2009;33:1121–7.

    PubMed  Google Scholar 

  4. Kuhl C, Hornnes PJ, Andersen O. Etiology and pathophysiology of gestational diabetes mellitus. Diabetes. 1985;34 Suppl 2:66–70.

    PubMed  Google Scholar 

  5. Kautzky-Willer A, Prager R, Waldhausl W, et al. Pronounced insulin resistance and inadequate beta-cell secretion characterize lean gestational diabetes during and after pregnancy. Diabetes Care. 1997;20:1717–23.

    Article  PubMed  CAS  Google Scholar 

  6. Xiang AH, Peters RK, Trigo E, et al. Multiple metabolic defects during late pregnancy in women at high risk for type 2 diabetes. Diabetes. 1999;48:848–54.

    Article  PubMed  CAS  Google Scholar 

  7. Taricco E, Radaelli T, Rossi G, et al. Effects of gestational diabetes on fetal oxygen and glucose levels in vivo. Bjog. 2009;116:1729–35.

    Article  PubMed  CAS  Google Scholar 

  8. Daskalakis G, Marinopoulos S, Krielesi V, et al. Placental pathology in women with gestational diabetes. Acta Obstet Gynecol Scand. 2008;87:403–7.

    Article  PubMed  Google Scholar 

  9. Madazli R, Tuten A, Calay Z, et al. The incidence of placental abnormalities, maternal and cord plasma malondialdehyde and vascular endothelial growth factor levels in women with gestational diabetes mellitus and nondiabetic controls. Gynecol Obstet Invest. 2008;65:227–32.

    Article  PubMed  CAS  Google Scholar 

  10. Schafer-Graf UM, Dupak J, Vogel M, et al. Hyperinsulinism, neonatal obesity and placental immaturity in infants born to women with one abnormal glucose tolerance test value. J Perinat Med. 1998;26:27–36.

    Article  PubMed  CAS  Google Scholar 

  11. Bartha JL, Martinez-Del-Fresno P, Comino-Delgado R. Gestational diabetes mellitus diagnosed during early pregnancy. Am J Obstet Gynecol. 2000;182:346–50.

    Article  PubMed  CAS  Google Scholar 

  12. Meyer WJ, Carbone J, Gauthier DW, et al. Early gestational glucose screening and gestational diabetes. J Reprod Med. 1996;41:675–9.

    PubMed  CAS  Google Scholar 

  13. Cetin I, de Santis MS, Taricco E, et al. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol. 2005;192:610–7.

    Article  PubMed  CAS  Google Scholar 

  14. Taricco E, Radaelli T, Nobile de Santis MS, et al. Foetal and placental weights in relation to maternal characteristics in gestational diabetes. Placenta. 2003;24:343–7.

    Article  PubMed  CAS  Google Scholar 

  15. Kucuk M, Doymaz F. Placental weight and placental weight-to-birth weight ratio are increased in diet- and exercise-treated gestational diabetes mellitus subjects but not in subjects with one abnormal value on 100-g oral glucose tolerance test. J Diabetes Complications. 2009;23:25–31.

    Article  PubMed  Google Scholar 

  16. Lao TT, Lee CP, Wong WM. Placental weight to birthweight ratio is increased in mild gestational glucose intolerance. Placenta. 1997;18:227–30.

    Article  PubMed  CAS  Google Scholar 

  17. Chan KK, Ho LF, Lao TT. Nutritional intake and placental size in gestational diabetic pregnancies–a preliminary observation. Placenta. 2003;24:985–8.

    Article  PubMed  CAS  Google Scholar 

  18. Pathak S, Hook E, Hackett G, et al. Cord coiling, umbilical cord insertion and placental shape in an unselected cohort delivering at term: relationship with common obstetric outcomes. Placenta. 2010;31:963–8.

    Article  PubMed  CAS  Google Scholar 

  19. Calderon IM, Damasceno DC, Amorin RL, et al. Morphometric study of placental villi and vessels in women with mild hyperglycemia or gestational or overt diabetes. Diabetes Res Clin Pract. 2007;78:65–71.

    Article  PubMed  Google Scholar 

  20. al-Okail MS, al-Attas OS. Histological changes in placental syncytiotrophoblasts of poorly controlled gestational diabetic patients. Endocr J. 1994;41:355–60.

    Article  PubMed  CAS  Google Scholar 

  21. Nadra K, Quignodon L, Sardella C, et al. PPARgamma in placental angiogenesis. Endocrinology. 2010;151:4969–81.

    Article  PubMed  CAS  Google Scholar 

  22. Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64:1033–40.

    Article  PubMed  CAS  Google Scholar 

  23. Khaliq A, Li XF, Shams M, et al. Localisation of placenta growth factor (PIGF) in human term placenta. Growth Factors. 1996;13:243–50. color plates I-II,pre bk cov.

    Article  PubMed  CAS  Google Scholar 

  24. Lang I, Pabst MA, Hiden U, et al. Heterogeneity of microvascular endothelial cells isolated from human term placenta and macrovascular umbilical vein endothelial cells. Eur J Cell Biol. 2003;82:163–73.

    Article  PubMed  Google Scholar 

  25. Murthi P, Hiden U, Rajaraman G, et al. Novel homeobox genes are differentially expressed in placental microvascular endothelial cells compared with macrovascular cells. Placenta. 2008;29:624–30.

    Article  PubMed  CAS  Google Scholar 

  26. Murthi P, So M, Gude NM, et al. Homeobox genes are differentially expressed in macrovascular human umbilical vein endothelial cells and microvascular placental endothelial cells. Placenta. 2007;28:219–23.

    Article  PubMed  CAS  Google Scholar 

  27. Grissa O, Yessoufou A, Mrisak I, et al. Growth factor concentrations and their placental mRNA expression are modulated in gestational diabetes mellitus: possible interactions with macrosomia. BMC Pregnancy Childbirth. 2010;10:7.

    Article  PubMed  Google Scholar 

  28. Hill DJ, Tevaarwerk GJ, Caddell C, et al. Fibroblast growth factor 2 is elevated in term maternal and cord serum and amniotic fluid in pregnancies complicated by diabetes: relationship to fetal and placental size. J Clin Endocrinol Metab. 1995;80:2626–32.

    Article  PubMed  CAS  Google Scholar 

  29. Holdsworth-Carson SJ, Lim R, Mitton A, et al. Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: gestational diabetes mellitus, intrauterine growth restriction and preeclampsia. Placenta. 2010;31:222–9.

    Article  PubMed  CAS  Google Scholar 

  30. • Acosta JC, Haas DM, Saha CK et al (2011) Gestational diabetes mellitus alters maternal and neonatal circulating endothelial progenitor cell subsets. Am J Obstet Gynecol 204: 254 e258-254 e215. Circulating endothelial progenitor cells are reduced in an intrauterine GDM environment. This may contribute to endothelial dysfunction in placenta and program the offspring for later disease associated with impaired endothelial function.

    Article  Google Scholar 

  31. Estes ML, Mund JA, Mead LE, et al. Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry A. 2010;77:831–9.

    PubMed  Google Scholar 

  32. Jirkovska M, Kubinova L, Janacek J, et al. Topological properties and spatial organization of villous capillaries in normal and diabetic placentas. J Vasc Res. 2002;39:268–78.

    Article  PubMed  Google Scholar 

  33. Babawale MO, Lovat S, Mayhew TM, et al. Effects of gestational diabetes on junctional adhesion molecules in human term placental vasculature. Diabetologia. 2000;43:1185–96.

    Article  PubMed  CAS  Google Scholar 

  34. Fadda GM, D'Antona D, Ambrosini G, et al. Placental and fetal pulsatility indices in gestational diabetes mellitus. J Reprod Med. 2001;46:365–70.

    PubMed  CAS  Google Scholar 

  35. Brown MA, North L, Hargood J. Uteroplacental Doppler ultrasound in routine antenatal care. Aust N Z J Obstet Gynaecol. 1990;30:303–7.

    Article  PubMed  CAS  Google Scholar 

  36. Pietryga M, Brazert J, Wender-Ozegowska E, et al. Placental Doppler velocimetry in gestational diabetes mellitus. J Perinat Med. 2006;34:108–10.

    Article  PubMed  Google Scholar 

  37. Reisenberger K, Egarter C, Kapiotis S, et al. Transfer of erythropoietin across the placenta perfused in vitro. Obstet Gynecol. 1997;89:738–42.

    Article  PubMed  CAS  Google Scholar 

  38. Leushner JR, Tevaarwerk GJ, Clarson CL, et al. Analysis of the collagens of diabetic placental villi. Cell Mol Biol. 1986;32:27–35.

    PubMed  CAS  Google Scholar 

  39. Stanley JL, Cheung CC, Rueda-Clausen CF, et al. Effect of gestational diabetes on maternal artery function. Reprod Sci. 2011;18:342–52.

    Article  PubMed  CAS  Google Scholar 

  40. Bobadilla RA, van Bree R, Vercruysse L, et al. Placental effects of systemic tumour necrosis factor-alpha in an animal model of gestational diabetes mellitus. Placenta. 2010;31:1057–63.

    Article  PubMed  CAS  Google Scholar 

  41. Mildenberger E, Biesel B, Siegel G, et al. Nitric oxide and endothelin in oxygen-dependent regulation of vascular tone of human umbilical vein. Am J Physiol Heart Circ Physiol. 2003;285:H1730–7.

    PubMed  CAS  Google Scholar 

  42. Boura AL, Walters WA, Read MA, et al. Autacoids and control of human placental blood flow. Clin Exp Pharmacol Physiol. 1994;21:737–48.

    Article  PubMed  CAS  Google Scholar 

  43. San Martin R, Sobrevia L. Gestational diabetes and the adenosine/L-arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta. 2006;27:1–10.

    Article  PubMed  CAS  Google Scholar 

  44. Schonfelder G, John M, Hopp H, et al. Expression of inducible nitric oxide synthase in placenta of women with gestational diabetes. Faseb J. 1996;10:777–84.

    PubMed  CAS  Google Scholar 

  45. Figueroa R, Martinez E, Fayngersh RP, et al. Alterations in relaxation to lactate and H(2)O(2) in human placental vessels from gestational diabetic pregnancies. Am J Physiol Heart Circ Physiol. 2000;278:H706–13.

    PubMed  CAS  Google Scholar 

  46. Sobrevia L, Cesare P, Yudilevich DL, et al. Diabetes-induced activation of system y + and nitric oxide synthase in human endothelial cells: association with membrane hyperpolarization. J Physiol. 1995;489(Pt 1):183–92.

    PubMed  CAS  Google Scholar 

  47. Sobrevia L, Yudilevich DL, Mann GE. Elevated D-glucose induces insulin insensitivity in human umbilical endothelial cells isolated from gestational diabetic pregnancies. J Physiol. 1998;506(Pt 1):219–30.

    Article  PubMed  CAS  Google Scholar 

  48. Vasquez G, Sanhueza F, Vasquez R, et al. Role of adenosine transport in gestational diabetes-induced L-arginine transport and nitric oxide synthesis in human umbilical vein endothelium. J Physiol. 2004;560:111–22.

    Article  PubMed  CAS  Google Scholar 

  49. De Vriese AS, Verbeuren TJ, Van de Voorde J, et al. Endothelial dysfunction in diabetes. Br J Pharmacol. 2000;130:963–74.

    Article  PubMed  Google Scholar 

  50. Tooke JE, Goh KL. Endotheliopathy precedes type 2 diabetes. Diabetes Care. 1998;21:2047–9.

    Article  PubMed  CAS  Google Scholar 

  51. Sobrevia L, Mann GE. Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia. Exp Physiol. 1997;82:423–52.

    PubMed  CAS  Google Scholar 

  52. • Sobrevia L, Gonzalez M (2009) A role for insulin on L-arginine transport in fetal endothelial dysfunction in hyperglycaemia. Curr Vasc Pharmacol 7: 467–474. Insulin blocks the stimulatory high-glucose effect on L-arginine transport by reducing transcriptional activity of the amino acid transporter through transcription factors specificity protein 1 and nuclear factor-κB. This may contribute to fetal endothelial dysfunction in diabetic pregnancies.

    Article  PubMed  CAS  Google Scholar 

  53. •• Lappas M, Hiden U, Froehlich J et al (2011) The Role of Oxidative Stress in the Pathophysiology of Gestational Diabetes Mellitus. Antioxid Redox Signal. This is a comprehensive review on pathogenesis of gestational diabetes and the oxidative and nitrative processes occurring in the placenta in this pathology.

  54. Coughlan MT, Vervaart PP, Permezel M, et al. Altered placental oxidative stress status in gestational diabetes mellitus. Placenta. 2004;25:78–84.

    Article  PubMed  CAS  Google Scholar 

  55. Kwek K, Read MA, Khong TY, et al. Vasoactive effects of 8-epi-prostaglandin F(2alpha)in isolated human placental conduit and resistance blood vessels in vitro. Placenta. 2001;22:526–33.

    Article  PubMed  CAS  Google Scholar 

  56. Lappas M, Mitton A, Permezel M. In response to oxidative stress, the expression of inflammatory cytokines and antioxidant enzymes are impaired in placenta, but not adipose tissue, of women with gestational diabetes. J Endocrinol. 2010;204:75–84.

    Article  PubMed  CAS  Google Scholar 

  57. Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr. 2005;25:151–74.

    Article  PubMed  CAS  Google Scholar 

  58. Bowen JM, Chamley L, Mitchell MD, et al. Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta. 2002;23:239–56.

    Article  PubMed  CAS  Google Scholar 

  59. Marseille-Tremblay C, Ethier-Chiasson M, Forest JC, et al. Impact of maternal circulating cholesterol and gestational diabetes mellitus on lipid metabolism in human term placenta. Mol Reprod Dev. 2008;75:1054–62.

    Article  PubMed  CAS  Google Scholar 

  60. Coughlan MT, Oliva K, Georgiou HM, et al. Glucose-induced release of tumour necrosis factor-alpha from human placental and adipose tissues in gestational diabetes mellitus. Diabet Med. 2001;18:921–7.

    Article  PubMed  CAS  Google Scholar 

  61. Challier JC, Basu S, Bintein T, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29:274–81.

    Article  PubMed  CAS  Google Scholar 

  62. Lager S, Jansson N, Olsson AL, et al. Effect of IL-6 and TNF-alpha on fatty acid uptake in cultured human primary trophoblast cells. Placenta. 2011;32:121–7.

    Article  PubMed  CAS  Google Scholar 

  63. Magnusson AL, Waterman IJ, Wennergren M, et al. Triglyceride hydrolase activities and expression of fatty acid binding proteins in the human placenta in pregnancies complicated by intrauterine growth restriction and diabetes. J Clin Endocrinol Metab. 2004;89:4607–14.

    Article  PubMed  CAS  Google Scholar 

  64. • Gauster M, Hiden U, vanPoppel M et al (2011) Dysregulation of placental endothelial lipase in obese women with gestational diabetes mellitus. Diabetes in press. This demonstrates that neither GDM nor obesity alone but only their combination induces changes in a placental key lipase.

  65. Gauster M, Hiden U, Blaschitz A, et al. Dysregulation of placental endothelial lipase and lipoprotein lipase in intrauterine growth-restricted pregnancies. J Clin Endocrinol Metab. 2007;92:2256–63.

    Article  PubMed  CAS  Google Scholar 

  66. Varastehpour A, Radaelli T, Minium J, et al. Activation of phospholipase A2 is associated with generation of placental lipid signals and fetal obesity. J Clin Endocrinol Metab. 2006;91:248–55.

    Article  PubMed  CAS  Google Scholar 

  67. •• Radaelli T, Lepercq J, Varastehpour A et al (2009) Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am J Obstet Gynecol 201: 209 e201-209 e210. This demonstrates that GDM is a distinct diabetic entity in its effects on the placenta.

    Article  Google Scholar 

  68. Jansson T, Ekstrand Y, Bjorn C, et al. Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes. 2002;51:2214–9.

    Article  PubMed  CAS  Google Scholar 

  69. Kuruvilla AG, D'Souza SW, Glazier JD, et al. Altered activity of the system A amino acid transporter in microvillous membrane vesicles from placentas of macrosomic babies born to diabetic women. J Clin Invest. 1994;94:689–95.

    Article  PubMed  CAS  Google Scholar 

  70. Kalhan S, Parimi P. Gluconeogenesis in the fetus and neonate. Semin Perinatol. 2000;24:94–106.

    Article  PubMed  CAS  Google Scholar 

  71. Hahn T, Barth S, Weiss U, et al. Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? Faseb J. 1998;12:1221–31.

    PubMed  CAS  Google Scholar 

  72. Illsley NP, Hall S, Stacey TE. The modulation of glucose transfer across the human placenta by intervillous flow rates: An in vitro perfusion study. Troph Res. 1987;2:535–44.

    Google Scholar 

  73. Osmond DT, King RG, Brennecke SP, et al. Placental glucose transport and utilisation is altered at term in insulin-treated, gestational-diabetic patients. Diabetologia. 2001;44:1133–9.

    Article  PubMed  CAS  Google Scholar 

  74. Osmond DT, Nolan CJ, King RG, et al. Effects of gestational diabetes on human placental glucose uptake, transfer, and utilisation. Diabetologia. 2000;43:576–82.

    Article  PubMed  CAS  Google Scholar 

  75. • Colomiere M, Permezel M, Riley C et al (2009) Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus. Eur J Endocrinol 160: 567–578. This compares the effects of GDM with and without obesity on insulin signaling in the placenta and shows varying effects, thus demonstrating the complexity of GDM-associated changes.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Desoye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauster, M., Desoye, G., Tötsch, M. et al. The Placenta and Gestational Diabetes Mellitus. Curr Diab Rep 12, 16–23 (2012). https://doi.org/10.1007/s11892-011-0244-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-011-0244-5

Keywords

Navigation