Skip to main content

Advertisement

Log in

What Do We Know and We Do Not Know About Cardiovascular Autonomic Neuropathy in Diabetes

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular autonomic neuropathy (CAN) in diabetes is generally overlooked in practice, although awareness of its serious consequences is emerging. Challenges in understanding the complex, dynamic changes in the modulation of the sympathetic/parasympathetic systems’ tone and their interactions with physiologic mechanisms regulating the control of heart rate, blood pressure, and other cardiovascular functions in the presence of acute hyper-or-hypoglycemic stress, other stressors or medication, and challenges with sensitive evaluations have contributed to lower CAN visibility compared with other diabetes complications. Yet, CAN is a significant cause of morbidity and mortality, due to a high-risk of cardiac arrhythmias, silent myocardial ischemia and sudden death. While striving for aggressive risk factor control in diabetes practice seemed intuitive, recent reports of major clinical trials undermine established thinking concerning glycemic control and cardiovascular risk. This review covers current understanding and gaps in that understanding of the clinical implications of CAN and prevention and treatment of CAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DCCT. (1998). The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia, 41, 416–423.

    Article  Google Scholar 

  2. Pop-Busui, R. (2010). Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care, 33, 434–441.

    Article  PubMed  Google Scholar 

  3. Pop-Busui, R., Low, P. A., Waberski, B. H., Martin, C. L., Albers, J. W., Feldman, E. L., Sommer, C., Cleary, P. A., Lachin, J. M., & Herman, W. H. (2009). Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation, 119, 2886–2893.

    Article  PubMed  CAS  Google Scholar 

  4. Spallone, V., Ziegler, D., Freeman, R., Bernardi, L., Frontoni, S., Pop-Busui, R., Stevens, M., Kempler, P., Hilsted, J., Tesfaye, S., et al. (2012). Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metabolism Research and Reviews (in press).

  5. Kempler, P., Tesfaye, S., Chaturvedi, N., Stevens, L. K., Webb, D. J., Eaton, S., Kerenyi, Z., Tamas, G., Ward, J. D., & Fuller, J. H. (2002). Autonomic neuropathy is associated with increased cardiovascular risk factors: the EURODIAB IDDM Complications Study. Diabetic Medicine, 19, 900–909.

    Article  PubMed  CAS  Google Scholar 

  6. Low, P. A., Benrud-Larson, L. M., Sletten, D. M., Opfer-Gehrking, T. L., Weigand, S. D., O’Brien, P. C., Suarez, G. A., & Dyck, P. J. (2004). Autonomic symptoms and diabetic neuropathy: a population-based study. Diabetes Care, 27, 2942–2947.

    Article  PubMed  Google Scholar 

  7. Kennedy, W. R., Navarro, X., & Sutherland, D. E. (1995). Neuropathy profile of diabetic patients in a pancreas transplantation program. Neurology, 45, 773–780.

    Article  PubMed  CAS  Google Scholar 

  8. Singh, J. P., Larson, M. G., O’Donnell, C. J., Wilson, P. F., Tsuji, H., Lloyd-Jones, D. M., & Levy, D. (2000). Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). The American Journal of Cardiology, 86, 309–312.

    Article  PubMed  CAS  Google Scholar 

  9. Wu, J. S., Yang, Y. C., Lin, T. S., Huang, Y. H., Chen, J. J., Lu, F. H., Wu, C. H., & Chang, C. J. (2007). Epidemiological evidence of altered cardiac autonomic function in subjects with impaired glucose tolerance but not isolated impaired fasting glucose. Journal of Clinical Endocrinology and Metabolism, 92, 3885–3889.

    Article  PubMed  CAS  Google Scholar 

  10. Navarro, X., Kennedy, W. R., & Sutherland, D. E. (1991). Autonomic neuropathy and survival in diabetes mellitus: effects of pancreas transplantation. Diabetologia, 34(Suppl 1), S108–S112.

    Article  PubMed  Google Scholar 

  11. O’Brien, I. A., McFadden, J. P., & Corrall, R. J. (1991). The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Quarterly Journal of Medicine, 79, 495–502.

    PubMed  Google Scholar 

  12. Ewing, D. J., Campbell, I. W., & Clarke, B. F. (1980). Assessment of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications. Annals of Internal Medicine, 92, 308–311.

    PubMed  CAS  Google Scholar 

  13. Maser, R. E., Mitchell, B. D., Vinik, A. I., & Freeman, R. (2003). The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care, 26, 1895–1901.

    Article  PubMed  Google Scholar 

  14. Soedamah-Muthu, S. S., Chaturvedi, N., Witte, D. R., Stevens, L. K., Porta, M., & Fuller, J. H. (2008). Relationship between risk factors and mortality in type 1 diabetic patients in Europe: the EURODIAB Prospective Complications Study (PCS). Diabetes Care, 31, 1360–1366.

    Article  PubMed  CAS  Google Scholar 

  15. Gerritsen, J., Dekker, J. M., TenVoorde, B. J., Kostense, P. J., Heine, R. J., Bouter, L. M., Heethaar, R. M., & Stehouwer, C. D. (2001). Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care, 24, 1793–1798.

    Article  PubMed  CAS  Google Scholar 

  16. Lykke, J. A., Tarnow, L., Parving, H. H., & Hilsted, J. (2008). A combined abnormality in heart rate variation and QT corrected interval is a strong predictor of cardiovascular death in type 1 diabetes. Scandinavian Journal of Clinical and Laboratory Investigation, 68, 654–659.

    Article  PubMed  CAS  Google Scholar 

  17. Ziegler, D., Zentai, C. P., Perz, S., Rathmann, W., Haastert, B., Doring, A., & Meisinger, C. (2008). Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care, 31, 556–561.

    Article  PubMed  Google Scholar 

  18. Pop-Busui, R., Evans, G. W., Gerstein, H. C., Fonseca, V., Fleg, J. L., Hoogwerf, B. J., Genuth, S., Grimm, R. H., Corson, M. A., & Prineas, R. (2010). Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care, 33, 1578–1584.

    Article  PubMed  CAS  Google Scholar 

  19. Nordin, C. (2010). The case for hypoglycaemia as a proarrhythmic event: basic and clinical evidence. Diabetologia, 53, 1552–1561.

    Article  PubMed  CAS  Google Scholar 

  20. Landstedt-Hallin, L., Englund, A., Adamson, U., & Lins, P. E. (1999). Increased QT dispersion during hypoglycaemia in patients with type 2 diabetes mellitus. Journal of Internal Medicine, 246, 299–307.

    Article  PubMed  CAS  Google Scholar 

  21. Robinson, R. T., Harris, N. D., Ireland, R. H., Macdonald, I. A., & Heller, S. R. (2004). Changes in cardiac repolarization during clinical episodes of nocturnal hypoglycaemia in adults with type 1 diabetes. Diabetologia, 47, 312–315.

    Article  PubMed  CAS  Google Scholar 

  22. DCCT. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. The New England Journal of Medicine, 329, 977–986.

    Article  Google Scholar 

  23. UKPDS. (1998). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet, 352, 837–853.

    Article  Google Scholar 

  24. Cryer, P. E. (2001). Hypoglycemia-associated autonomic failure in diabetes. American Journal of Physiology, Endocrinology and Metabolism, 281, E1115–E1121.

    CAS  Google Scholar 

  25. Adler, G. K., Bonyhay, I., Failing, H., Waring, E., Dotson, S., & Freeman, R. (2009). Antecedent hypoglycemia impairs autonomic cardiovascular function: implications for rigorous glycemic control. Diabetes, 58, 360–366.

    Article  PubMed  CAS  Google Scholar 

  26. Vinik, A. I., Maser, R. E., Mitchell, B. D., & Freeman, R. (2003). Diabetic autonomic neuropathy. Diabetes Care, 26, 1553–1579.

    Article  PubMed  Google Scholar 

  27. Young, L. H., Wackers, F. J., Chyun, D. A., Davey, J. A., Barrett, E. J., Taillefer, R., Heller, G. V., Iskandrian, A. E., Wittlin, S. D., Filipchuk, N., et al. (2009). Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. Journal of the American Medical Association, 301, 1547–1555.

    Article  PubMed  CAS  Google Scholar 

  28. Hage, F. G., & Iskandrian, A. E. (2011). Cardiovascular imaging in diabetes mellitus. Journal of Nuclear Cardiology, 18, 959–965.

    Article  PubMed  Google Scholar 

  29. Vinik, A. I., & Ziegler, D. (2007). Diabetic cardiovascular autonomic neuropathy. Circulation, 115, 387–397.

    Article  PubMed  Google Scholar 

  30. Axelrod, S., Lishner, M., Oz, O., Bernheim, J., & Ravid, M. (1987). Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron, 45, 202–206.

    Article  PubMed  CAS  Google Scholar 

  31. Givertz, M. M., Sawyer, D. B., & Colucci, W. S. (2001). Antioxidants and myocardial contractility: illuminating the "Dark Side" of beta-adrenergic receptor activation? Circulation, 103, 782–783.

    Article  PubMed  CAS  Google Scholar 

  32. Iwai-Kanai, E., Hasegawa, K., Araki, M., Kakita, T., Morimoto, T., & Sasayama, S. (1999). Alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation, 100, 305–311.

    Article  PubMed  CAS  Google Scholar 

  33. Paulson, D. J., & Light, K. E. (1981). Elevation of serum and ventricular norepinephrine content in the diabetic rat. Research Communications in Chemical Pathology and Pharmacology, 33, 559–562.

    PubMed  CAS  Google Scholar 

  34. Drake-Holland, A. J., Van der Vusse, G. J., Roemen, T. H., Hynd, J. W., Mansaray, M., Wright, Z. M., & Noble, M. I. (2001). Chronic catecholamine depletion switches myocardium from carbohydrate to lipid utilisation. Cardiovascular Drugs and Therapy, 15, 111–117.

    Article  PubMed  CAS  Google Scholar 

  35. Schrauwen, P., Hoeks, J., & Hesselink, M. K. (2006). Putative function and physiological relevance of the mitochondrial uncoupling protein-3: involvement in fatty acid metabolism? Progress in Lipid Research, 45, 17–41.

    Article  PubMed  CAS  Google Scholar 

  36. Pop-Busui, R., Kirkwood, I., Schmid, H., Marinescu, V., Schroeder, J., Larkin, D., Yamada, E., Raffel, D. M., & Stevens, M. J. (2004). Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. Journal of the American College of Cardiology, 44, 2368–2374.

    Article  PubMed  CAS  Google Scholar 

  37. An, D., & Rodrigues, B. (2006). Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. American Journal of Physiology-Heart and Circulatory Physiology, 291, H1489–H1506.

    Article  PubMed  CAS  Google Scholar 

  38. Goodwin, G. W., Ahmad, F., Doenst, T., & Taegtmeyer, H. (1998). Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. American Journal of Physiology, 274, H1239–H1247.

    PubMed  CAS  Google Scholar 

  39. Brown, M., Marshall, D. R., Sobel, B. E., & Bergmann, S. R. (1987). Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation, 76, 687–696.

    Article  PubMed  CAS  Google Scholar 

  40. Collins-Nakai, R. L., Noseworthy, D., & Lopaschuk, G. D. (1994). Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. American Journal of Physiology, 267, H1862–H1871.

    PubMed  CAS  Google Scholar 

  41. Herrero, P., Peterson, L. R., McGill, J. B., Matthew, S., Lesniak, D., Dence, C., & Gropler, R. J. (2006). Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. Journal of the American College of Cardiology, 47, 598–604.

    Article  PubMed  CAS  Google Scholar 

  42. Feuvray, D., & Lopaschuk, G. D. (1997). Controversies on the sensitivity of the diabetic heart to ischemic injury: the sensitivity of the diabetic heart to ischemic injury is decreased. Cardiovascular Research, 34, 113–120.

    Article  PubMed  CAS  Google Scholar 

  43. Hirabara, S. M., Silveira, L. R., Alberici, L. C., Leandro, C. V., Lambertucci, R. H., Polimeno, G. C., Cury Boaventura, M. F., Procopio, J., Vercesi, A. E., & Curi, R. (2006). Acute effect of fatty acids on metabolism and mitochondrial coupling in skeletal muscle. Biochimica et Biophysica Acta, 1757, 57–66.

    Article  PubMed  CAS  Google Scholar 

  44. Chatham, J. C., & McNeill, J. H. (Eds.). (1996). The heart in diabetes. Norwell, MA: Kluwer Academic Publishers.

    Google Scholar 

  45. Francis, G. S. (2001). Diabetic cardiomyopathy: fact or fiction? Heart, 85, 247–248.

    Article  PubMed  CAS  Google Scholar 

  46. Frustaci, A., Kajstura, J., Chimenti, C., Jakoniuk, I., Leri, A., Maseri, A., Nadal-Ginard, B., & Anversa, P. (2000). Myocardial cell death in human diabetes. Circulation Research, 87, 1123–1132.

    Article  PubMed  CAS  Google Scholar 

  47. Packer, M., O’Connor, C. M., Ghali, J. K., Pressler, M. L., Carson, P. E., Belkin, R. N., Miller, A. B., Neuberg, G. W., Frid, D., Wertheimer, J. H., et al. (1996). Effect of amlodipine on morbidity and mortality in severe chronic heart failure. Prospective Randomized Amlodipine Survival Evaluation Study Group. The New England Journal of Medicine, 335, 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  48. Buxton, D. B., Schwaiger, M., Nguyen, A., Phelps, M. E., & Schelbert, H. R. (1988). Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circulation Research, 63, 628–634.

    Article  PubMed  CAS  Google Scholar 

  49. Eichhorn, E. J., & Bristow, M. R. (1996). Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation, 94, 2285–2296.

    Article  PubMed  CAS  Google Scholar 

  50. Katz, A. M. (1986). Potential deleterious effects of inotropic agents in the therapy of chronic heart failure. Circulation, 73, III184–III190.

    PubMed  CAS  Google Scholar 

  51. Mueller, H. S., & Ayres, S. M. (1977). The role of propranolol in the treatment of acute myocardial infarction. Progress in Cardiovascular Diseases, 19, 405–412.

    Article  PubMed  CAS  Google Scholar 

  52. Fang, Z. Y., Najos-Valencia, O., Leano, R., & Marwick, T. H. (2003). Patients with early diabetic heart disease demonstrate a normal myocardial response to dobutamine. Journal of the American College of Cardiology, 42, 446–453.

    Article  PubMed  CAS  Google Scholar 

  53. Vered, A., Battler, A., Segal, P., Liberman, D., Yerushalmi, Y., Berezin, M., & Neufeld, H. N. (1984). Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). The American Journal of Cardiology, 54, 633–637.

    Article  PubMed  CAS  Google Scholar 

  54. Sacre, J. W., Franjic, B., Jellis, C. L., Jenkins, C., Coombes, J. S., & Marwick, T. H. (2010). Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC. Cardiovascular Imaging, 3, 1207–1215.

    Article  PubMed  Google Scholar 

  55. Fang, Z. Y., Prins, J. B., & Marwick, T. H. (2004). Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocrine Reviews, 25, 543–567.

    Article  PubMed  CAS  Google Scholar 

  56. Fang, Z. Y., Yuda, S., Anderson, V., Short, L., Case, C., & Marwick, T. H. (2003). Echocardiographic detection of early diabetic myocardial disease. Journal of the American College of Cardiology, 41, 611–617.

    Article  PubMed  CAS  Google Scholar 

  57. Rosengard-Barlund, M., Bernardi, L., Fagerudd, J., Mantysaari, M., Af Bjorkesten, C. G., Lindholm, H., Forsblom, C., Waden, J., & Groop, P. H. (2009). Early autonomic dysfunction in type 1 diabetes: a reversible disorder? Diabetologia, 52, 1164–1172.

    Article  PubMed  CAS  Google Scholar 

  58. La Rovere, M. T., Bigger, J. T., Jr., Marcus, F. I., Mortara, A., & Schwartz, P. J. (1998). Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet, 351, 478–484.

    Article  PubMed  Google Scholar 

  59. La Rovere, M. T., Pinna, G. D., Maestri, R., Robbi, E., Caporotondi, A., Guazzotti, G., Sleight, P., & Febo, O. (2009). Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. Journal of the American College of Cardiology, 53, 193–199.

    Article  PubMed  Google Scholar 

  60. Ormezzano, O., Quesada, J. L., Pierre, H., Mallion, J. M., & Baguet, J. P. (2008). Evaluation of the prognostic value of baroreflex sensitivity in hypertensive patients: the EVABAR study. Journal of Hypertension, 26, 1373–1378.

    Article  PubMed  CAS  Google Scholar 

  61. Gerson, M. C., Caldwell, J. H., Ananthasubramaniam, K., Clements, I. P., Henzlova, M. J., Amanullah, A., & Jacobson, A. F. (2011). Influence of diabetes mellitus on prognostic utility of imaging of myocardial sympathetic innervation in heart failure patients. Circulation. Cardiovascular Imaging, 4, 87–93.

    Article  PubMed  Google Scholar 

  62. Swanson, S., Mueller, G., Raffel, D., Duvernoy, C. S., Plunkett, C., Stevens, M., & Pop-Busui, R. (2011). Left ventricle function and sympathetic innervation in type 1 diabetes. Circulation, 124, A15606.

    Google Scholar 

  63. Panzer, C., Lauer, M. S., Brieke, A., Blackstone, E., & Hoogwerf, B. (2002). Association of fasting plasma glucose with heart rate recovery in healthy adults: a population-based study. Diabetes, 51, 803–807.

    Article  PubMed  CAS  Google Scholar 

  64. Ziegler, D., Zentai, C., Perz, S., Rathmann, W., Haastert, B., Meisinger, C., & Lowel, H. (2006). Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population. Experimental and Clinical Endocrinology & Diabetes, 114, 153–159.

    Article  CAS  Google Scholar 

  65. Vinik, A. I., Maser, R. E., & Ziegler, D. (2011). Autonomic imbalance: prophet of doom or scope for hope? Diabetic Medicine, 28, 643–651.

    Article  PubMed  CAS  Google Scholar 

  66. Carnethon, M. R., Prineas, R. J., Temprosa, M., Zhang, Z. M., Uwaifo, G., & Molitch, M. E. (2006). The association among autonomic nervous system function, incident diabetes, and intervention arm in the diabetes prevention program. Diabetes Care, 29, 914–919.

    Article  PubMed  Google Scholar 

  67. Chang, C. J., Yang, Y. C., Lu, F. H., Lin, T. S., Chen, J. J., Yeh, T. L., Wu, C. H., & Wu, J. S. (2010). Altered cardiac autonomic function may precede insulin resistance in metabolic syndrome. American Journal of Medicine, 123, 432–438.

    Article  PubMed  CAS  Google Scholar 

  68. Laitinen, T., Lindstrom, J., Eriksson, J., Ilanne-Parikka, P., Aunola, S., Keinanen-Kiukaanniemi, S., Tuomilehto, J., & Uusitupa, M. (2011). Cardiovascular autonomic dysfunction is associated with central obesity in persons with impaired glucose tolerance. Diabetic Medicine, 28, 699–704.

    Article  PubMed  CAS  Google Scholar 

  69. Converse, R. L., Jr., Jacobsen, T. N., Toto, R. D., Jost, C. M., Cosentino, F., Fouad-Tarazi, F., & Victor, R. G. (1992). Sympathetic overactivity in patients with chronic renal failure. The New England Journal of Medicine, 327, 1912–1918.

    Article  PubMed  Google Scholar 

  70. Siddiqi, L., Joles, J. A., Grassi, G., & Blankestijn, P. J. (2009). Is kidney ischemia the central mechanism in parallel activation of the renin and sympathetic system? Journal of Hypertension, 27, 1341–1349.

    Article  PubMed  CAS  Google Scholar 

  71. Brotman, D. J., Bash, L. D., Qayyum, R., Crews, D., Whitsel, E. A., Astor, B. C., & Coresh, J. (2010). Heart rate variability predicts ESRD and CKD-related hospitalization. Journal of the American Society of Nephrology, 21, 1560–1570.

    Article  PubMed  CAS  Google Scholar 

  72. Spallone, V., Gambardella, S., Maiello, M. R., Barini, A., Frontoni, S., & Menzinger, G. (1994). Relationship between autonomic neuropathy, 24-h blood pressure profile, and nephropathy in normotensive IDDM patients. Diabetes Care, 17, 578–584.

    Article  PubMed  CAS  Google Scholar 

  73. Locatelli, F., Marcelli, D., & Conte, F. (1997). Dialysis patient outcomes in Europe vs the USA. Why do Europeans live longer? Nephrology, Dialysis, Transplantation, 12, 1816–1819.

    Article  PubMed  CAS  Google Scholar 

  74. Locatelli, F., Marcelli, D., Conte, F., D’Amico, M., Del Vecchio, L., Limido, A., Malberti, F., & Spotti, D. (2001). Survival and development of cardiovascular disease by modality of treatment in patients with end-stage renal disease. Journal of the American Society of Nephrology, 12, 2411–2417.

    PubMed  CAS  Google Scholar 

  75. Manjunath, G., Levey, A. S., & Sarnak, M. J. (2002). How can the cardiac death rate be reduced in dialysis patients? Seminars in Dialysis, 15, 18–20.

    Article  PubMed  Google Scholar 

  76. Hathaway, D. K., Cashion, A. K., Milstead, E. J., Winsett, R. P., Cowan, P. A., Wicks, M. N., & Gaber, A. O. (1998). Autonomic dysregulation in patients awaiting kidney transplantation. American Journal of Kidney Diseases, 32, 221–229.

    Article  PubMed  CAS  Google Scholar 

  77. Ranpuria, R., Hall, M., Chan, C. T., & Unruh, M. (2008). Heart rate variability (HRV) in kidney failure: measurement and consequences of reduced HRV. Nephrology, Dialysis, Transplantation, 23, 444–449.

    Article  PubMed  Google Scholar 

  78. Campese, V. M., Romoff, M. S., Levitan, D., Lane, K., & Massry, S. G. (1981). Mechanisms of autonomic nervous system dysfunction in uremia. Kidney International, 20, 246–253.

    Article  PubMed  CAS  Google Scholar 

  79. Brown, D. W., Giles, W. H., & Croft, J. B. (2000). Left ventricular hypertrophy as a predictor of coronary heart disease mortality and the effect of hypertension. American Heart Journal, 140, 848–856.

    Article  PubMed  CAS  Google Scholar 

  80. Levy, D., Anderson, K. M., Savage, D. D., Balkus, S. A., Kannel, W. B., & Castelli, W. P. (1987). Risk of ventricular arrhythmias in left ventricular hypertrophy: the Framingham Heart Study. The American Journal of Cardiology, 60, 560–565.

    Article  PubMed  CAS  Google Scholar 

  81. Nishimura, M., Hashimoto, T., Kobayashi, H., Fukuda, T., Okino, K., Yamamoto, N., Nakamura, N., Yoshikawa, T., Takahashi, H., & Ono, T. (2004). Association between cardiovascular autonomic neuropathy and left ventricular hypertrophy in diabetic haemodialysis patients. Nephrology, Dialysis, Transplantation, 19, 2532–2538.

    Article  PubMed  Google Scholar 

  82. Pacher, P., Liaudet, L., Soriano, F. G., Mabley, J. G., Szabo, E., & Szabo, C. (2002). The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes, 51, 514–521.

    Article  PubMed  CAS  Google Scholar 

  83. Edwards, J. L., Vincent, A. M., Cheng, H. T., & Feldman, E. L. (2008). Diabetic neuropathy: mechanisms to management. Pharmacology and Therapeutics, 120, 1–34.

    Article  PubMed  CAS  Google Scholar 

  84. Witzke, K. A., Vinik, A. I., Grant, L. M., Grant, W. P., Parson, H. K., Pittenger, G. L., & Burcus, N. (2011). Loss of RAGE defense: a cause of Charcot neuroarthropathy? Diabetes Care, 34, 1617–1621.

    Article  PubMed  CAS  Google Scholar 

  85. Wang, Y., Schmeichel, A. M., Iida, H., Schmelzer, J. D., & Low, P. A. (2006). Enhanced inflammatory response via activation of NF-kappaB in acute experimental diabetic neuropathy subjected to ischemia-reperfusion injury. Journal of Neurological Sciences, 247, 47–52.

    Article  CAS  Google Scholar 

  86. Cameron, N. E., & Cotter, M. A. (2008). Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Current Drug Targets, 9, 60–67.

    Article  PubMed  CAS  Google Scholar 

  87. Kellogg, A. P., Wiggin, T., Larkin, D., Hayes, J., Stevens, M., & Pop-Busui, R. (2007). Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fibers loss in experimental diabetes. Diabetes, 56, 2997–3005.

    Article  PubMed  CAS  Google Scholar 

  88. Lieb, D. C., Parson, H. K., Mamikunian, G., & Vinik, A. I. (2012). Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. Experimental Diabetes Research, 2012, 878760.

    Article  PubMed  Google Scholar 

  89. Duchen, L. W., Anjorin, A., Watkins, P. J., & Mackay, J. D. (1980). Pathology of autonomic neuropathy in diabetes mellitus. Annals of Internal Medicine, 92, 301–303.

    PubMed  CAS  Google Scholar 

  90. Purewal, T. S., Goss, D. E., Zanone, M. M., Edmonds, M. E., & Watkins, P. J. (1995). The splanchnic circulation and postural hypotension in diabetic autonomic neuropathy. Diabetic Medicine, 12, 513–522.

    Article  PubMed  CAS  Google Scholar 

  91. Ejskjaer, N., Arif, S., Dodds, W., Zanone, M. M., Vergani, D., Watkins, P. J., & Peakman, M. (1999). Prevalence of autoantibodies to autonomic nervous tissue structures in type 1 diabetes mellitus. Diabetic Medicine, 16, 544–549.

    Article  PubMed  CAS  Google Scholar 

  92. Rabinowe, S. L., Brown, F. M., Watts, M., & Smith, A. M. (1990). Complement-fixing antibodies to sympathetic and parasympathetic tissues in IDDM. Autonomic brake index and heart-rate variation. Diabetes Care, 13, 1084–1088.

    Article  PubMed  CAS  Google Scholar 

  93. Stroud, C. R., Heller, S. R., Ward, J. D., Hardisty, C. A., & Weetman, A. P. (1997). Analysis of antibodies against components of the autonomic nervous system in diabetes mellitus. QJM, 90, 577–585.

    Article  PubMed  CAS  Google Scholar 

  94. Granberg, V., Ejskjaer, N., Peakman, M., & Sundkvist, G. (2005). Autoantibodies to autonomic nerves associated with cardiac and peripheral autonomic neuropathy. Diabetes Care, 28, 1959–1964.

    Article  PubMed  Google Scholar 

  95. Stella, P., Ellis, D., Maser, R. E., & Orchard, T. J. (2000). Cardiovascular autonomic neuropathy (expiration and inspiration ratio) in type 1 diabetes. Incidence and predictors. Journal of Diabetes and its Complications, 14, 1–6.

    Article  PubMed  CAS  Google Scholar 

  96. Witte, D. R., Tesfaye, S., Chaturvedi, N., Eaton, S. E., Kempler, P., & Fuller, J. H. (2005). Risk factors for cardiac autonomic neuropathy in type 1 diabetes mellitus. Diabetologia, 48, 164–171.

    Article  PubMed  CAS  Google Scholar 

  97. Taskiran, M., Rasmussen, V., Rasmussen, B., Fritz-Hansen, T., Larsson, H. B., Jensen, G. B., & Hilsted, J. (2004). Left ventricular dysfunction in normotensive type 1 diabetic patients: the impact of autonomic neuropathy. Diabetic Medicine, 21, 524–530.

    Article  PubMed  CAS  Google Scholar 

  98. Pfeifer, M. A., Weinberg, C. R., Cook, D. L., Reenan, A., Halter, J. B., Ensinck, J. W., & Porte, D., Jr. (1984). Autonomic neural dysfunction in recently diagnosed diabetic subjects. Diabetes Care, 7, 447–453.

    Article  PubMed  CAS  Google Scholar 

  99. Nauman, J., Janszky, I., Vatten, L. J., & Wisloff, U. (2011). Temporal changes in resting heart rate and deaths from ischemic heart disease. Journal of the American Medical Association, 306, 2579–2587.

    Article  PubMed  CAS  Google Scholar 

  100. Furlan, R., Guzzetti, S., Crivellaro, W., Dassi, S., Tinelli, M., Baselli, G., Cerutti, S., Lombardi, F., Pagani, M., & Malliani, A. (1990). Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation, 81, 537–547.

    Article  PubMed  CAS  Google Scholar 

  101. Spallone, V., Bernardi, L., Ricordi, L., Solda, P., Maiello, M. R., Calciati, A., Gambardella, S., Fratino, P., & Menzinger, G. (1993). Relationship between the circadian rhythms of blood pressure and sympathovagal balance in diabetic autonomic neuropathy. Diabetes, 42, 1745–1752.

    Article  PubMed  CAS  Google Scholar 

  102. Lurbe, E., Redon, J., Kesani, A., Pascual, J. M., Tacons, J., Alvarez, V., & Batlle, D. (2002). Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. The New England Journal of Medicine, 347, 797–805.

    Article  PubMed  CAS  Google Scholar 

  103. Schwartz, P. J., La Rovere, M. T., & Vanoli, E. (1992). Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation, 85, I77–I91.

    PubMed  CAS  Google Scholar 

  104. Schwartz, P. J., La Rovere, M. T., & Vanoli, E. (1996). Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. The Consensus Committee of the American Autonomic Society and the American Academy of Neurology. Neurology, 46, 1470.

    Article  Google Scholar 

  105. Schwartz, P. J., La Rovere, M. T., & Vanoli, E. (1996). Assessment: Clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology, 46, 873–880.

    Article  Google Scholar 

  106. Low, P. A., Denq, J. C., Opfer-Gehrking, T. L., Dyck, P. J., O’Brien, P. C., & Slezak, J. M. (1997). Effect of age and gender on sudomotor and cardiovagal function and blood pressure response to tilt in normal subjects. Muscle & Nerve, 20, 1561–1568.

    Article  CAS  Google Scholar 

  107. Boulton, A. J., Vinik, A. I., Arezzo, J. C., Bril, V., Feldman, E. L., Freeman, R., Malik, R. A., Maser, R. E., Sosenko, J. M., & Ziegler, D. (2005). Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care, 28, 956–962.

    Article  PubMed  Google Scholar 

  108. England, J. D., Gronseth, G. S., Franklin, G., Carter, G. T., Kinsella, L. J., Cohen, J. A., Asbury, A. K., Szigeti, K., Lupski, J. R., Latov, N., et al. (2009). Evaluation of distal symmetric polyneuropathy: the role of autonomic testing, nerve biopsy, and skin biopsy (an evidence-based review). Muscle & Nerve, 39, 106–115.

    Article  CAS  Google Scholar 

  109. Bernardi, L., Spallone, V., Stevens, M., Hilsted, J., Frontoni, S., Pop-Busui, R., Ziegler, D., Kempler, P., Freeman, R., Low, P., et al. (2012). Investigation methods for cardiac autonomic function in human research studies. Diabetes Metabolism Research and Reviews (in press).

  110. Bernardi, L., Spallone, V., Stevens, M., Hilsted, J., Frontoni, S., Pop-Busui, R., Ziegler, D., Kempler, P., Freeman, R., Low, P., et al. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93, 1043–1065.

    Article  Google Scholar 

  111. Pichot, V., Gaspoz, J. M., Molliex, S., Antoniadis, A., Busso, T., Roche, F., Costes, F., Quintin, L., Lacour, J. R., & Barthelemy, J. C. (1999). Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. Journal of Applied Physiology, 86, 1081–1091.

    PubMed  CAS  Google Scholar 

  112. Toledo, E., Gurevitz, O., Hod, H., Eldar, M., & Akselrod, S. (2003). Wavelet analysis of instantaneous heart rate: a study of autonomic control during thrombolysis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284, R1079–R1091.

    PubMed  CAS  Google Scholar 

  113. Raffel, D. M., & Wieland, D. M. (2001). Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nuclear Medicine and Biology, 28, 541–559.

    Article  PubMed  CAS  Google Scholar 

  114. Stevens, M. J., Raffel, D. M., Allman, K. C., Dayanikli, F., Ficaro, E., Sandford, T., Wieland, D. M., Pfeifer, M. A., & Schwaiger, M. (1998). Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation, 98, 961–968.

    Article  PubMed  CAS  Google Scholar 

  115. Stevens, M. J., Raffel, D. M., Allman, K. C., Schwaiger, M., & Wieland, D. M. (1999). Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: an assessment by C-11 hydroxyephedrine and positron emission tomography. Metabolism, 48, 92–101.

    Article  PubMed  CAS  Google Scholar 

  116. Schnell, O., Muhr, D., Weiss, M., Dresel, S., Haslbeck, M., & Standl, E. (1996). Reduced myocardial 123I-metaiodobenzylguanidine uptake in newly diagnosed IDDM patients. Diabetes, 45, 801–805.

    Article  PubMed  CAS  Google Scholar 

  117. Caldwell, J. H., Link, J. M., Levy, W. C., Poole, J. E., & Stratton, J. R. (2008). Evidence for pre- to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. Journal of Nuclear Medicine, 49, 234–241.

    Article  PubMed  Google Scholar 

  118. Hamner, J. W., & Taylor, J. A. (2001). Automated quantification of sympathetic beat-by-beat activity, independent of signal quality. Journal of Applied Physiology, 91, 1199–1206.

    PubMed  CAS  Google Scholar 

  119. DCCT/EDIC, Writing, and Group. (2003). Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. Journal of the American Medical Association, 290, 2159–2167.

    Article  Google Scholar 

  120. Azad, N., Emanuele, N. V., Abraira, C., Henderson, W. G., Colwell, J., Levin, S. R., Nuttall, F. Q., Comstock, J. P., Sawin, C. T., Silbert, C., et al. (1999). The effects of intensive glycemic control on neuropathy in the VA cooperative study on type II diabetes mellitus (VA CSDM). Journal of Diabetes and its Complications, 13, 307–313.

    Article  PubMed  CAS  Google Scholar 

  121. Duckworth, W., Abraira, C., Moritz, T., Reda, D., Emanuele, N., Reaven, P. D., Zieve, F. J., Marks, J., Davis, S. N., Hayward, R., et al. (2009). Glucose control and vascular complications in veterans with type 2 diabetes. The New England Journal of Medicine, 360, 129–139.

    Article  PubMed  CAS  Google Scholar 

  122. Gaede, P., Vedel, P., Larsen, N., Jensen, G. V., Parving, H. H., & Pedersen, O. (2003). Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. The New England Journal of Medicine, 348, 383–393.

    Article  PubMed  Google Scholar 

  123. Carnethon, M. R., Jacobs, D. R., Jr., Sidney, S., & Liu, K. (2003). Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: the CARDIA study. Diabetes Care, 26, 3035–3041.

    Article  PubMed  Google Scholar 

  124. Carnethon, M. R., Jacobs, D. R., Jr., Sidney, S., Sternfeld, B., Gidding, S. S., Shoushtari, C., & Liu, K. (2005). A longitudinal study of physical activity and heart rate recovery: CARDIA, 1987–1993. Medicine and Science in Sports and Exercise, 37, 606–612.

    Article  PubMed  Google Scholar 

  125. Maser, R. E., & Lenhard, M. J. (2007). An overview of the effect of weight loss on cardiovascular autonomic function. Current Diabetes Reviews, 3, 204–211.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

RPB is supported by the Juvenile Diabetes Research Foundation grant 1-2008-1025, and by 1R01HL102334-01, and 1R03 DK094499-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Pop-Busui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pop-Busui, R. What Do We Know and We Do Not Know About Cardiovascular Autonomic Neuropathy in Diabetes. J. of Cardiovasc. Trans. Res. 5, 463–478 (2012). https://doi.org/10.1007/s12265-012-9367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9367-6

Keywords

Navigation