Skip to main content
Log in

A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Consumption of a high-fat diet (HFD) in experimental animal models initiates a series of molecular events and outcomes, including insulin resistance and obesity, that mimic the metabolic syndrome in humans. The relationship among, and order of, the molecular events linking a diet high in fat to pathologies is often unclear. In the present study, we provide several novel insights into the relationship between a HFD and AMP-activated protein kinase (AMPK), a key regulator of cellular metabolism and whole-body energy balance. HFD substantially decreased the activities of both isoforms of AMPK in white adipose tissue, heart, and liver. These decreases in AMPK activity occurred in the absence of decreased AMPK transcription, systemic inflammation, hyperglycemia, or elevated levels of free fatty acids. The HFD-induced decrease in AMPK activity was associated with systemic insulin resistance and hyperleptinemia. In blood, >98 % of AMPK activity was localized in agranulocytes as the α1 isoform. In contrast to the solid tissues studied, AMPK activities were not altered by HFD in granulocytes or agranulocytes. We conclude that HFD-induced obesity causes a broad, non-tissue, or isoform-specific lowering of AMPK activity. Given the central position AMPK plays in whole-body energy balance, this decreased AMPK activity may play a previously unrecognized role in obesity and its associated pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexandraki K, Piperi C, Kalofoutis C, Singh J, Alaveras A, Kalofoutis A (2006) Inflammatory process in type 2 diabetes: the role of cytokines. Ann N Y Acad Sci 1084:89–117

    Article  PubMed  Google Scholar 

  2. Axelsen LN, Lademann JB, Petersen JS, Holstein-Rathlou NH, Ploug T, Prats C, Pedersen HD, Kjolbye AL (2010) Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am J Physiol Regul Integr Comp Physiol 298(6):R1560–1570

    Article  PubMed  Google Scholar 

  3. Barroso E, Rodriguez-Calvo R, Serrano-Marco L, Astudillo AM, Balsinde J, Palomer X, Vazquez-Carrera M (2011) The PPARbeta/delta activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1alpha-Lipin 1-PPARalpha pathway leading to increased fatty acid oxidation. Endocrinology 152(5):1848–1859

    Article  PubMed  Google Scholar 

  4. Bedoui S, Velkoska E, Bozinovski S, Jones JE, Anderson GP, Morris MJ (2005) Unaltered TNF-alpha production by macrophages and monocytes in diet-induced obesity in the rat. J Inflamm (Lond) 2(1):2

    Article  Google Scholar 

  5. Bonnard C, Durand A, Vidal H, Rieusset J (2008) Changes in adiponectin, its receptors and AMPK activity in tissues of diet-induced diabetic mice. Diabetes Metab 34(1):52–61

    Article  PubMed  Google Scholar 

  6. Bookout AL, Mangelsdorf DJ (2003) Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal 1:e012

    Article  PubMed  Google Scholar 

  7. Cano P, Cardinali DP, Rios-Lugo MJ, Fernandez-Mateos MP, Reyes Toso CF, Esquifino AI (2009) Effect of a high-fat diet on 24-hour pattern of circulating adipocytokines in rats. Obesity (Silver Spring) 17(10):1866–1871

    Article  Google Scholar 

  8. Carling D, Mayer FV, Sanders MJ, Gamblin SJ (2011) AMP-activated protein kinase: nature's energy sensor. Nat Chem Biol 7(8):512–518

    Article  PubMed  Google Scholar 

  9. Daval M, Foufelle F, Ferre P (2006) Functions of AMP-activated protein kinase in adipose tissue. J Physiol 574(Pt 1):55–62

    Article  PubMed  Google Scholar 

  10. Fogarty S, Hardie DG (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 1804(3):581–591

    Article  PubMed  Google Scholar 

  11. Fujii N, Ho RC, Manabe Y, Jessen N, Toyoda T, Holland WL, Summers SA, Hirshman MF, Goodyear LJ (2008) Ablation of AMP-activated protein kinase alpha2 activity exacerbates insulin resistance induced by high-fat feeding of mice. Diabetes 57(11):2958–2966

    Article  PubMed  Google Scholar 

  12. Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB (2010) Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. Am J Physiol Cell Physiol 298(4):C961–971

    Article  PubMed  Google Scholar 

  13. Gauthier MS, O'Brien EL, Bigornia S, Mott M, Cacicedo JM, Xu XJ, Gokce N, Apovian C, Ruderman N (2011) Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem Biophys Res Commun 404(1):382–387

    Article  PubMed  Google Scholar 

  14. Giugliano D, Ceriello A, Esposito K (2008) Are there specific treatments for the metabolic syndrome? Am J Clin Nutr 87(1):8–11

    PubMed  Google Scholar 

  15. Gomez-Perez Y, Capllonch-Amer G, Gianotti M, Llado I, Proenza AM (2012) Long-term high-fat-diet feeding induces skeletal muscle mitochondrial biogenesis in rats in a sex-dependent and muscle-type specific manner. Nutr Metab (Lond) 9:15

    Article  Google Scholar 

  16. Gonzalez AA, Kumar R, Mulligan JD, Davis AJ, Weindruch R, Saupe KW (2004) Metabolic adaptations to fasting and chronic caloric restriction in heart, muscle, and liver do not include changes in AMPK activity. Am J Physiol Endocrinol Metab 287(5):E1032–1037

    Article  PubMed  Google Scholar 

  17. Goseki-Sone M, Maruyama R, Sogabe N, Hosoi T (2007) Effects of dietary lactose on long-term high-fat-diet-induced obesity in rats. Obesity (Silver Spring) 15(11):2605–2613

    Article  Google Scholar 

  18. Ha SK, Kim J, Chae C (2011) Role of AMP-activated protein kinase and adiponectin during development of hepatic steatosis in high-fat diet-induced obesity in rats. J Comp Pathol 145(1):88–94

    Article  PubMed  Google Scholar 

  19. Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25(18):1895–1908

    Article  PubMed  Google Scholar 

  20. Hardie DG (2011) Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr 93(4):891S–896S

    Article  PubMed  Google Scholar 

  21. Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546(1):113–120

    Article  PubMed  Google Scholar 

  22. Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23(2):270–299

    Article  PubMed  Google Scholar 

  23. Hegarty BD, Turner N, Cooney GJ, Kraegen EW (2009) Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol (Oxf) 196(1):129–145

    Article  Google Scholar 

  24. Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF (2004) Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279(2):1070–1079

    Article  PubMed  Google Scholar 

  25. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1(1):15–25

    Article  PubMed  Google Scholar 

  26. Kelly M, Keller C, Avilucea PR, Keller P, Luo Z, Xiang X, Giralt M, Hidalgo J, Saha AK, Pedersen BK, Ruderman NB (2004) AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem Biophys Res Commun 320(2):449–454

    Article  PubMed  Google Scholar 

  27. Kim SJ, Jung JY, Kim HW, Park T (2008) Anti-obesity effects of Juniperus chinensis extract are associated with increased AMP-activated protein kinase expression and phosphorylation in the visceral adipose tissue of rats. Biol Pharm Bull 31(7):1415–1421

    Article  PubMed  Google Scholar 

  28. Ko HJ, Zhang Z, Jung DY, Jun JY, Ma Z, Jones KE, Chan SY, Kim JK (2009) Nutrient stress activates inflammation and reduces glucose metabolism by suppressing AMP-activated protein kinase in the heart. Diabetes 58(11):2536–2546

    Article  PubMed  Google Scholar 

  29. Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB (2006) Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. Am J Physiol Endocrinol Metab 290(3):E471–479

    Article  PubMed  Google Scholar 

  30. Lee YS, Li P, Huh JY, Hwang IJ, Lu M, Kim JI, Ham M, Talukdar S, Chen A, Lu WJ, Bandyopadhyay GK, Schwendener R, Olefsky J, Kim JB (2011) Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 60(10):2474–2483

    Article  PubMed  Google Scholar 

  31. Lim CT, Kola B, Korbonits M (2010) AMPK as a mediator of hormonal signalling. J Mol Endocrinol 44(2):87–97

    Article  PubMed  Google Scholar 

  32. Lin S, Thomas TC, Storlien LH, Huang XF (2000) Development of high fat diet-induced obesity and leptin resistance in C57Bl/6 J mice. Int J Obes Relat Metab Disord 24(5):639–646

    Article  PubMed  Google Scholar 

  33. Liu Y, Wan Q, Guan Q, Gao L, Zhao J (2006) High-fat diet feeding impairs both the expression and activity of AMPKa in rats' skeletal muscle. Biochem Biophys Res Commun 339(2):701–707

    Article  PubMed  Google Scholar 

  34. Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116(7):1776–1783

    Article  PubMed  Google Scholar 

  35. Martin TL, Alquier T, Asakura K, Furukawa N, Preitner F, Kahn BB (2006) Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J Biol Chem 281(28):18933–18941

    Article  PubMed  Google Scholar 

  36. Meksawan K, Venkatraman JT, Awad AB, Pendergast DR (2004) Effect of dietary fat intake and exercise on inflammatory mediators of the immune system in sedentary men and women. J Am Coll Nutr 23(4):331–340

    PubMed  Google Scholar 

  37. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415(6869):339–343

    Article  PubMed  Google Scholar 

  38. Mulligan JD, Gonzalez AA, Kumar R, Davis AJ, Saupe KW (2005) Aging elevates basal AMPK activity and eliminates hypoxic activation of AMPK in mouse liver. J Gerontol A Biol Sci Med Sci 60(1):21–27

    Google Scholar 

  39. Panchal SK, Brown (2011) L Rodent models for metabolic syndrome research. J Biomed Biotechnol 2011:351982

    Article  PubMed  Google Scholar 

  40. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140(2):197–208

    Article  PubMed  Google Scholar 

  41. Richter EA, Ruderman NB (2009) AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J 418(2):261–275

    Article  PubMed  Google Scholar 

  42. Rojas J, Arraiz N, Aguirre M, Velasco M, Bermudez V (2011) AMPK as target for intervention in childhood and adolescent obesity. J Obes 2011:252817

    PubMed  Google Scholar 

  43. Ruderman NB, Keller C, Richard AM, Saha AK, Luo Z, Xiang X, Giralt M, Ritov VB, Menshikova EV, Kelley DE, Hidalgo J, Pedersen BK, Kelly M (2006) Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention of the metabolic syndrome. Diabetes 55(Suppl 2):S48–54

    Article  PubMed  Google Scholar 

  44. Sag D, Carling D, Stout RD, Suttles J (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181(12):8633–8641

    PubMed  Google Scholar 

  45. Saha AK, Xu XJ, Lawson E, Deoliveira R, Brandon AE, Kraegen EW, Ruderman NB (2010) Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle. Diabetes 59(10):2426–2434

    Article  PubMed  Google Scholar 

  46. Scarpace PJ, Zhang Y (2009) Leptin resistance: a prediposing factor for diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 296(3):R493–500

    Article  PubMed  Google Scholar 

  47. Shoelson SE, Goldfine AB (2009) Getting away from glucose: fanning the flames of obesity-induced inflammation. Nat Med 15(4):373–374

    Article  PubMed  Google Scholar 

  48. Steinberg GR (2007) Inflammation in obesity is the common link between defects in fatty acid metabolism and insulin resistance. Cell Cycle 6(8):888–894

    Article  PubMed  Google Scholar 

  49. Sutherland LN, Capozzi LC, Turchinsky NJ, Bell RC, Wright DC (2008) Time course of high-fat diet-induced reductions in adipose tissue mitochondrial proteins: potential mechanisms and the relationship to glucose intolerance. Am J Physiol Endocrinol Metab 295(5):E1076–1083

    Article  PubMed  Google Scholar 

  50. Tilg H, Moschen AR (2008) Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14(3–4):222–231

    PubMed  Google Scholar 

  51. Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B, Chung JH (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59(3):554–563

    Article  PubMed  Google Scholar 

  52. Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, Martinet W, Van Hoof V, Vrints CJ, Ventura-Clapier R, Conraads VM (2010) Functional adiponectin resistance at the level of the skeletal muscle in mild to moderate chronic heart failure. Circ Heart Fail 3(2):185–194

    Article  PubMed  Google Scholar 

  53. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M, Giri S, Andreelli F (2010) AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol 45(4):276–295

    Article  PubMed  Google Scholar 

  54. WHO (2011) Obesity and overweight WHO Fact Sheet N311. Updated March 2011

  55. Wong AK, Howie J, Petrie JR, Lang CC (2009) AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease. Clin Sci (Lond) 116(8):607–620

    Article  Google Scholar 

  56. Woods SC, Seeley RJ, Rushing PA, D'Alessio D, Tso P (2003) A controlled high-fat diet induces an obese syndrome in rats. J Nutr 133(4):1081–1087

    PubMed  Google Scholar 

  57. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830

    PubMed  Google Scholar 

  58. Xue B, Kahn BB (2006) AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 574(Pt 1):73–83

    Article  PubMed  Google Scholar 

  59. Yang Z, Kahn BB, Shi H, Xue BZ (2010) Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem 285(25):19051–19059

    Article  PubMed  Google Scholar 

  60. Yu X, McCorkle S, Wang M, Lee Y, Li J, Saha AK, Unger RH, Ruderman NB (2004) Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia 47(11):2012–2021

    Article  PubMed  Google Scholar 

  61. Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinforma 7:85

    Article  Google Scholar 

Download references

Acknowledgments

These studies were supported by the National Institute of Health grants R01DK080345, R01DK080345-02S1, and T32HL007936.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacob D. Mulligan or Kurt W. Saupe.

Additional information

Kurt W. Saupe deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindholm, C.R., Ertel, R.L., Bauwens, J.D. et al. A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats. J Physiol Biochem 69, 165–175 (2013). https://doi.org/10.1007/s13105-012-0199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0199-2

Keywords

Navigation