Skip to main content

Advertisement

Log in

Lipotoxicity as a trigger factor of renal disease

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

In the last few decades, rapid changes in lifestyle have led to an alarming increase in the prevalence of obesity and obesity-associated complications. Obese patients are at increased risk of developing hypertension, heart disease, insulin resistance, dyslipidemia, type 2 diabetes and kidney disease. The surplus of calories is normally stored as triglycerides in adipose tissue. However, excess lipids can also accumulate ectopically in other organs, including the kidney, contributing to their damage through toxic processes named lipotoxicity. The kidney is negatively affected by dyslipidemia, lipid accumulation and changes in circulating adipokines that bring about alterations in renal lipid metabolism and promote insulin resistance, generation of reactive oxygen species and endoplasmic reticulum stress, ultimately leading to alterations in the glomerular filtration barrier and renal failure. This review focuses on the pathogenic molecular mechanisms associated with renal lipotoxicity, and presents new insights about potential new therapeutic targets and biomarkers such as microRNAs and long non-coding RNAs, of relevance for the early detection of lipid-associated kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the metabolic syndrome–an allostatic perspective. Biochim Biophys Acta 1801(3):338–349

    Article  CAS  PubMed  Google Scholar 

  2. Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, Campbell M, Curtis RK, Jimenez-Linan M, Blount M, Yeo GS, Lopez M, Seppanen-Laakso T, Ashcroft FM, Oresic M, Vidal-Puig A (2007) PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet 3(4):e64. doi:10.1371/journal.pgen.0030064 (06-PLGE-RA-0397R3 [pii])

    Article  PubMed  PubMed Central  Google Scholar 

  3. Medina-Gomez G, Gray S, Vidal-Puig A (2007) Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr 10(10A):1132–1137. doi:10.1017/S1368980007000614 (S1368980007000614 [pii])

    Article  PubMed  Google Scholar 

  4. Martinez-Garcia C, Izquierdo A, Velagapudi V, Vivas Y, Velasco I, Campbell M, Burling K, Cava F, Ros M, Oresic M, Vidal-Puig A, Medina-Gomez G (2012) Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model. Dis Model Mech 5(5):636–648. doi:10.1242/dmm.009266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moorhead JF, Chan MK, El-Nahas M, Varghese Z (1982) Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 2(8311):1309–1311

    Article  CAS  PubMed  Google Scholar 

  6. Chugh SS, Clement LC, Mace C (2012) New insights into human minimal change disease: lessons from animal models. Am J Kidney Dis 59(2):284–292. doi:10.1053/j.ajkd.2011.07.024 (S0272-6386(11)01306-0 [pii])

    Article  CAS  PubMed  Google Scholar 

  7. Abrass CK (2004) Overview: obesity: what does it have to do with kidney disease? J Am Soc Nephrol 15(11):2768–2772. doi:10.1097/01.ASN.0000141963.04540.3E

    Article  PubMed  Google Scholar 

  8. Joles JA, Kunter U, Janssen U, Kriz W, Rabelink TJ, Koomans HA, Floege J (2000) Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. J Am Soc Nephrol 11(4):669–683

    CAS  PubMed  Google Scholar 

  9. Shankar SS, Steinberg HO (2005) FFAs: do they play a role in vascular disease in the insulin resistance syndrome? Curr Diab Rep 5(1):30–35

    Article  PubMed  Google Scholar 

  10. Bobulescu IA (2010) Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens 19(4):393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iglesias J, Levine JS (2001) Albuminuria and renal injury—beware of proteins bearing gifts. Nephrol Dial Transpl 16(2):215–218

    Article  CAS  Google Scholar 

  12. Thomas ME, Harris KP, Walls J, Furness PN, Brunskill NJ (2002) Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria. Am J Physiol Renal Physiol 283(4):F640–F647

    Article  PubMed  Google Scholar 

  13. Virtue S, Vidal-Puig A (2008) It’s not how fat you are, it’s what you do with it that counts. PLoS Biol 6(9):e237. doi:10.1371/journal.pbio.0060237 (08-PLBI-E-1259 [pii])

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bard JM, Charles MA, Juhan-Vague I, Vague P, Andre P, Safar M, Fruchart JC, Eschwege E (2001) Accumulation of triglyceride-rich lipoprotein in subjects with abdominal obesity: the biguanides and the prevention of the risk of obesity (BIGPRO) 1 study. Arterioscler Thromb Vasc Biol 21(3):407–414

    Article  CAS  PubMed  Google Scholar 

  15. Cohn JS, Patterson BW, Uffelman KD, Davignon J, Steiner G (2004) Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab 89(8):3949–3955

    Article  CAS  PubMed  Google Scholar 

  16. Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, Feldman HI, Parekh RS, Kusek JW, Greene TH, Fink JC, Anderson AH, Choi MJ, Wright JT Jr, Lash JP, Freedman BI, Ojo A, Winkler CA, Raj DS, Kopp JB, He J, Jensvold NG, Tao K, Lipkowitz MS, Appel LJ, Investigators AS, Investigators CS (2013) APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med 369(23):2183–2196. doi:10.1056/NEJMoa1310345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329(5993):841–845. doi:10.1126/science.1193032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fornoni A, Merscher S, Kopp JB (2014) Lipid biology of the podocyte–new perspectives offer new opportunities. Nat Rev Nephrol 10(7):379–388. doi:10.1038/nrneph.2014.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iglesias-De La Cruz MC, Ruiz-Torres P, Alcami J, Diez-Marques L, Ortega-Velazquez R, Chen S, Rodriguez-Puyol M, Ziyadeh FN, Rodriguez-Puyol D (2001) Hydrogen peroxide increases extracellular matrix mRNA through TGF-beta in human mesangial cells. Kidney Int 59(1):87–95

    Article  CAS  PubMed  Google Scholar 

  20. Kume S, Uzu T, Araki S, Sugimoto T, Isshiki K, Chin-Kanasaki M, Sakaguchi M, Kubota N, Terauchi Y, Kadowaki T, Haneda M, Kashiwagi A, Koya D (2007) Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J Am Soc Nephrol 18(10):2715–2723

    Article  CAS  PubMed  Google Scholar 

  21. Jiang G, Li Z, Liu F, Ellsworth K, Dallas-Yang Q, Wu M, Ronan J, Esau C, Murphy C, Szalkowski D, Bergeron R, Doebber T, Zhang BB (2005) Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1. J Clin Invest 115(4):1030–1038. doi:10.1172/JCI23962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frank GD, Eguchi S, Motley ED (2005) The role of reactive oxygen species in insulin signaling in the vasculature. Antioxid Redox Signal 7(7–8):1053–1061

    Article  CAS  PubMed  Google Scholar 

  23. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, Li J, Mattiazzi A, Ciancio G, Chen L, Zilleruelo G, Abitbol C, Chandar J, Seeherunvong W, Ricordi C, Ikehata M, Rastaldi MP, Reiser J, Burke GW 3rd (2011) Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 3(85):85ra46. doi:10.1126/scitranslmed.3002231

    Article  PubMed  PubMed Central  Google Scholar 

  24. Beck LH Jr, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein JB, Salant DJ (2009) M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361(1):11–21. doi:10.1056/NEJMoa0810457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schermer B, Benzing T (2009) Lipid-protein interactions along the slit diaphragm of podocytes. J Am Soc Nephrol 20(3):473–478

    Article  CAS  PubMed  Google Scholar 

  26. Tesauro M, Canale MP, Rodia G, Di Daniele N, Lauro D, Scuteri A, Cardillo C (2011) Metabolic syndrome, chronic kidney, and cardiovascular diseases: role of adipokines. Cardiol Res Pract 2011:653182

    PubMed  PubMed Central  Google Scholar 

  27. Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L, Falkner B, Goldstein BJ (2008) Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118(5):1645–1656

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lennon R, Pons D, Sabin MA, Wei C, Shield JP, Coward RJ, Tavare JM, Mathieson PW, Saleem MA, Welsh GI (2009) Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrol Dial Transpl 24(11):3288–3296

    Article  CAS  Google Scholar 

  29. Martinez-Garcia C, Izquierdo-Lahuerta A, Vivas Y, Velasco I, Yeo TK, Chen S, Medina-Gomez G (2015) Renal lipotoxicity-associated inflammation and insulin resistance affects actin cytoskeleton organization in podocytes. PLoS One 10(11):e0142291. doi:10.1371/journal.pone.0142291 (PONE-D-15-26733 [pii])

    Article  PubMed  PubMed Central  Google Scholar 

  30. Welsh GI, Hale LJ, Eremina V, Jeansson M, Maezawa Y, Lennon R, Pons DA, Owen RJ, Satchell SC, Miles MJ, Caunt CJ, McArdle CA, Pavenstadt H, Tavare JM, Herzenberg AM, Kahn CR, Mathieson PW, Quaggin SE, Saleem MA, Coward RJ (2010) Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab 12(4):329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, Mundel P, Jehle AW (2010) Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol 299(4):F821–F829. doi:10.1152/ajprenal.00196.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kampe K, Sieber J, Orellana JM, Mundel P, Jehle AW (2014) Susceptibility of podocytes to palmitic acid is regulated by fatty acid oxidation and inversely depends on acetyl-CoA carboxylases 1 and 2. Am J Physiol Renal Physiol 306(4):F401–F409. doi:10.1152/ajprenal.00454.2013

    Article  CAS  PubMed  Google Scholar 

  33. Katsoulieris E, Mabley JG, Samai M, Sharpe MA, Green IC, Chatterjee PK (2010) Lipotoxicity in renal proximal tubular cells: relationship between endoplasmic reticulum stress and oxidative stress pathways. Free Radic Biol Med 48(12):1654–1662

    Article  CAS  PubMed  Google Scholar 

  34. Hyvonen ME, Saurus P, Wasik A, Heikkila E, Havana M, Trokovic R, Saleem M, Holthofer H, Lehtonen S (2010) Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes. Mol Cell Endocrinol 328(1–2):70–79. doi:10.1016/j.mce.2010.07.016

    Article  PubMed  Google Scholar 

  35. Robinson DR, Prickett JD, Makoul GT, Steinberg AD, Colvin RB (1986) Dietary fish oil reduces progression of established renal disease in (NZB x NZW)F1 mice and delays renal disease in BXSB and MRL/1 strains. Arthritis Rheum 29(4):539–546

    Article  CAS  PubMed  Google Scholar 

  36. An WS, Kim HJ, Cho KH, Vaziri ND (2009) Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am J Physiol Renal Physiol 297(4):F895–F903

    Article  CAS  PubMed  Google Scholar 

  37. Liu HY, Collins QF, Xiong Y, Moukdar F, Lupo EG Jr, Liu Z, Cao W (2007) Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase. J Biol Chem 282(19):14205–14212. doi:10.1074/jbc.M609701200

    Article  CAS  PubMed  Google Scholar 

  38. Tovar-Palacio C, Torres N, Diaz-Villasenor A, Tovar AR (2012) The role of nuclear receptors in the kidney in obesity and metabolic syndrome. Genes Nutr 7(4):483–498. doi:10.1007/s12263-012-0295-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Becker B, Kronenberg F, Kielstein JT, Haller H, Morath C, Ritz E, Fliser D (2005) Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study. J Am Soc Nephrol 16(4):1091–1098

    Article  CAS  PubMed  Google Scholar 

  40. Hou X, Shen YH, Li C, Wang F, Zhang C, Bu P, Zhang Y (2010) PPARalpha agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity. Biochem Biophys Res Commun 394(3):653–659. doi:10.1016/j.bbrc.2010.03.043

    Article  CAS  PubMed  Google Scholar 

  41. Lipscombe J, Lewis GF, Cattran D, Bargman JM (2001) Deterioration in renal function associated with fibrate therapy. Clin Nephrol 55(1):39–44

    CAS  PubMed  Google Scholar 

  42. Mao Z, Ong AC (2009) Peroxisome proliferator-activated receptor gamma agonists in kidney disease—future promise, present fears. Nephron Clin Pract 112(4):c230–c241

    Article  CAS  PubMed  Google Scholar 

  43. Zheng F, Fornoni A, Elliot SJ, Guan Y, Breyer MD, Striker LJ, Striker GE (2002) Upregulation of type I collagen by TGF-beta in mesangial cells is blocked by PPARgamma activation. Am J Physiol Renal Physiol 282(4):F639–F648. doi:10.1152/ajprenal.00189.2001

    Article  CAS  PubMed  Google Scholar 

  44. Kanjanabuch T, Ma LJ, Chen J, Pozzi A, Guan Y, Mundel P, Fogo AB (2007) PPAR-gamma agonist protects podocytes from injury. Kidney Int 71(12):1232–1239. doi:10.1038/sj.ki.5002248

    Article  CAS  PubMed  Google Scholar 

  45. Nakamura T, Ushiyama C, Osada S, Hara M, Shimada N, Koide H (2001) Pioglitazone reduces urinary podocyte excretion in type 2 diabetes patients with microalbuminuria. Metabolism 50(10):1193–1196. doi:10.1053/meta.2001.26703

    Article  CAS  PubMed  Google Scholar 

  46. Dobrian AD, Schriver SD, Khraibi AA, Prewitt RL (2004) Pioglitazone prevents hypertension and reduces oxidative stress in diet-induced obesity. Hypertension 43(1):48–56

    Article  CAS  PubMed  Google Scholar 

  47. Dobrian AD (2006) The complex role of PPARgamma in renal dysfunction in obesity: managing a Janus-faced receptor. Vascul Pharmacol 45(1):36–45. doi:10.1016/j.vph.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  48. Chen Y, Luo Q, Xiong Z, Liang W, Chen L, Xiong Z (2012) Telmisartan counteracts TGF-beta1 induced epithelial-to-mesenchymal transition via PPAR-gamma in human proximal tubule epithelial cells. Int J Clin Exp Pathol 5(6):522–529

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kassimatis TI, Goldsmith DJ (2014) Statins in chronic kidney disease and kidney transplantation. Pharmacol Res 88:62–73. doi:10.1016/j.phrs.2014.06.011 (S1043-6618(14)00103-0 [pii])

    Article  CAS  PubMed  Google Scholar 

  50. Nikolic D, Nikfar S, Salari P, Rizzo M, Ray KK, Pencina MJ, Mikhailidis DP, Toth PP, Nicholls SJ, Rysz J, Abdollahi M, Banach M, Lipid Blood Pressure, Meta-Analysis Collaboration G (2013) Effects of statins on lipid profile in chronic kidney disease patients: a meta-analysis of randomized controlled trials. Curr Med Res Opin 29(5):435–451. doi:10.1185/03007995.2013.779237

    Article  CAS  PubMed  Google Scholar 

  51. Kalaitzidis RG, Elisaf MS (2011) The role of statins in chronic kidney disease. Am J Nephrol 34(3):195–202

    Article  CAS  PubMed  Google Scholar 

  52. Wanner C, Tonelli M, Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group M (2014) KDIGO clinical practice guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int 85(6):1303–1309. doi:10.1038/ki.2014.31

    Article  CAS  PubMed  Google Scholar 

  53. Muskiet MH, Smits MM, Morsink LM, Diamant M (2014) The gut-renal axis: do incretin-based agents confer renoprotection in diabetes? Nat Rev Nephrol 10(2):88–103. doi:10.1038/nrneph.2013.272

    Article  CAS  PubMed  Google Scholar 

  54. Tuffin G, Waelti E, Huwyler J, Hammer C, Marti HP (2005) Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J Am Soc Nephrol 16(11):3295–3305. doi:10.1681/ASN.2005050485

    Article  CAS  PubMed  Google Scholar 

  55. Scindia Y, Deshmukh U, Thimmalapura PR, Bagavant H (2008) Anti-alpha8 integrin immunoliposomes in glomeruli of lupus-susceptible mice: a novel system for delivery of therapeutic agents to the renal glomerulus in systemic lupus erythematosus. Arthritis Rheum 58(12):3884–3891. doi:10.1002/art.24026

    Article  PubMed  PubMed Central  Google Scholar 

  56. Asgeirsdottir SA, Talman EG, de Graaf IA, Kamps JA, Satchell SC, Mathieson PW, Ruiters MH, Molema G (2010) Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro–a quantitative study. J Control Release 141(2):241–251. doi:10.1016/j.jconrel.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  57. Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ (2006) Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab 291(1):E99–E107

    Article  CAS  PubMed  Google Scholar 

  58. Leeuwis JW, Nguyen TQ, Dendooven A, Kok RJ, Goldschmeding R (2010) Targeting podocyte-associated diseases. Adv Drug Deliv Rev 62(14):1325–1336. doi:10.1016/j.addr.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  59. Reiser J, Sever S, Faul C (2014) Signal transduction in podocytes-spotlight on receptor tyrosine kinases. Nat Rev Nephrol 10(2):104–115. doi:10.1038/nrneph.2013.274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alvarez ML, Khosroheidari M, Eddy E, Kiefer J (2013) Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS One 8(10):e77468. doi:10.1371/journal.pone.0077468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou Q, Chung AC, Huang XR, Dong Y, Yu X, Lan HY (2014) Identification of novel long noncoding RNAs associated with TGF-beta/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am J Pathol 184(2):409–417. doi:10.1016/j.ajpath.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  62. Trionfini P, Benigni A, Remuzzi G (2015) MicroRNAs in kidney physiology and disease. Nat Rev Nephrol 11(1):23–33. doi:10.1038/nrneph.2014.202 (nrneph.2014.202 [pii])

    Article  CAS  PubMed  Google Scholar 

  63. Srivastava SP, Shi S, Koya D, Kanasaki K (2014) Lipid mediators in diabetic nephropathy. Fibrogenesis Tissue Repair 7:12. doi:10.1186/1755-1536-7-12 (1755-1536-7-12 [pii])

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang XX, Jiang T, Shen Y, Caldas Y, Miyazaki-Anzai S, Santamaria H, Urbanek C, Solis N, Scherzer P, Lewis L, Gonzalez FJ, Adorini L, Pruzanski M, Kopp JB, Verlander JW, Levi M (2010) Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 59(11):2916–2927. doi:10.2337/db10-0019 (db10-0019 [pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang T, Wang XX, Scherzer P, Wilson P, Tallman J, Takahashi H, Li J, Iwahashi M, Sutherland E, Arend L, Levi M (2007) Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes 56(10):2485–2493. doi:10.2337/db06-1642 (db06-1642 [pii])

    Article  CAS  PubMed  Google Scholar 

  66. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  67. Alvarez ML, DiStefano JK (2011) Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One 6(4):e18671. doi:10.1371/journal.pone.0018671

    Article  PubMed  PubMed Central  Google Scholar 

  68. Halley P, Kadakkuzha BM, Faghihi MA, Magistri M, Zeier Z, Khorkova O, Coito C, Hsiao J, Lawrence M, Wahlestedt C (2014) Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep 6(1):222–230. doi:10.1016/j.celrep.2013.12.015 (S2211-1247(13)00760-2 [pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Medina-Gómez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study Ethical approval is not required.

Informed consent

For this type of study formal consent is not required.

Funding

This study was funded by Ministerio de Economía y Competitividad of Spain (BFU2012- 33594, BFU2013-47384-R) and Comunidad de Madrid, Spain (S2010/BMD-2423).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izquierdo-Lahuerta, A., Martínez-García, C. & Medina-Gómez, G. Lipotoxicity as a trigger factor of renal disease. J Nephrol 29, 603–610 (2016). https://doi.org/10.1007/s40620-016-0278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-016-0278-5

Keywords

Navigation