Skip to main content
Log in

Diabetes-induced changes in glucose synthesis, intracellular glutathione status and hydroxyl free radical generation in rabbit kidney-cortex tubules

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetes-induced changes in glucose formation, intracellular and mitochondrial glutathione redox states as well as hydroxyl free radicals (HFR) generation have been investigated in rabbit kidney-cortex tubules. In contrast to renal tubules of control animals, diabetes-evoked increase in glucose formation in the presence of either aspartate + glycerol + octanoate or malate as gluconeogenic precursors (for about 50%) was accompanied by a diminished intracellular glutathione reduced form (GSH)/glutathione oxidised one (GSSG) ratio by about 30–40%, while the mitochondrial GSH/GSSG ratio was not altered. However, a relationship between the rate of gluconeogenesis and the intracellular glutathione redox state was maintained in renal tubules of both control and diabetic rabbits, as concluded from measurements in the presence of various gluconeogenic precursors. Moreover, diabetes resulted in both elevation of the glutathione reductase activity in rabbit kidney-cortex and acceleration of renal HFR generation (by about 2-fold). On the addition of melatonin, the hormone exhibiting antioxidative properties, the control values of HFR production were restored, suggesting that this compound might be beneficial during diabetes therapy. In view of the data, it seems likely that diabetes-induced increase in HFR formation in renal tubules might be responsible for a diminished intracellular glutathione redox state despite elevated glutathione reductase activity and accelerated rate of gluconeogenesis, providing glucose-6-phosphate for NADPH generation via pentose phosphate pathway. (Mol Cell Biochem 261: 91–98, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickinson DA, Forman HJ: Cellular glutathione and thiols metabolism. Biochem Pharmacol 64: 1019–1026, 2002

    Article  CAS  PubMed  Google Scholar 

  2. Bonnefont-Rousselot D, Jaudon MC, Bonnefont-Rousselot D, Bastard JP, Jaudon MC, Delattre J: Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab 26: 163–176, 2000

    CAS  PubMed  Google Scholar 

  3. Bryla J, Kiersztan A, Jagielski AK: Promising novel approaches to diabetes mellitus therapy: Pharmacological, molecular and cellular insights. Eur Citiz Qual Life 1: 137–161, 2003

    Google Scholar 

  4. Murakami K, Kondo T, Ohtsuka Y, Fujiwara Y, Shimada M, Kawakami Y: Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism 38: 753–758, 1989

    Article  CAS  PubMed  Google Scholar 

  5. Abou-Seif MA, Youssef AA: Oxidative stress and male IGF-1, gonadotropin and related hormones in diabetic patients. Clin Chem Lab Med 39: 618–623, 2001

    Article  CAS  PubMed  Google Scholar 

  6. Seghrouchni I, Drai J, Bannier E, Riviere J, Calmard P, Garcia I, Orgiazzi J, Revol A: Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin Chim Acta 321: 89–96, 2002

    Article  CAS  PubMed  Google Scholar 

  7. Sailaja YR, Baskar R, Saralakumari D: The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radic Biol Med 35: 133–139, 2003

    Article  CAS  PubMed  Google Scholar 

  8. Martin-Gallan P, Carrascosa A, Gussinye M, Dominguez C: Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 34: 1563–1574, 2003

    CAS  PubMed  Google Scholar 

  9. Mak DH, Ip SP, Li PC, Poon MK, Ko KM: Alterations in tissue glutathione antioxidant system in streptozotocin-induced diabetic rats. Mol Cell Biochem 162: 153–158, 1996

    Article  CAS  PubMed  Google Scholar 

  10. Bastar I, Seckin S, Uysal M, Aykac-Toker G: Effect of streptozotocin on glutathione and lipid peroxide levels in various tissues of rats. Res Commun Mol Pathol Pharmacol 102: 265–272, 1998

    CAS  PubMed  Google Scholar 

  11. Dincer Y, Telci A, Kayali R, Yilmaz IA, Cakatay U, Akcay T: Effect of alpha-lipoic acid on lipid peroxidation and anti-oxidant enzyme activities in diabetic rats. Clin Exp Pharmacol Physiol 29: 281–284, 2002

    Article  CAS  PubMed  Google Scholar 

  12. Abdel-Wahab MH, Abd-Allah AR: Possible protective effect of melatonin and/or desferrioxamine against streptozotocin-induced hyperglycaemia in mice. Pharmacol Res 41: 533–537, 2000

    Article  CAS  PubMed  Google Scholar 

  13. Tachi Y, Okuda Y, Bannai C, Bannai S, Shinohara M, Shimpuku H, Yamashita K, Ohura K: Hyperglycemia in diabetic rats reduces the glutathione content in the aortic tissue. Life Sci 69: 1039–1047, 2001

    Article  CAS  PubMed  Google Scholar 

  14. Volkovova K, Chorvathova V, Jurcovicova M, Koszeghyova L, Bobek P: Antioxidative state of the myocardium and kidneys in acute diabetic rats. Physiol Res 42: 251–255, 1993

    CAS  PubMed  Google Scholar 

  15. Suchocka Z, Kobylinska K, Pachecka J: Activity of glutathione-dependent enzymes in long term diabetes. II. Glutathione contents and activity of glutathione-dependent enzymes: S-transferase and peroxidase in the kidney cytosol of alloxan induced diabetic rats. Acta Pol Pharm 52: 213–217, 1995

    CAS  PubMed  Google Scholar 

  16. Powell LA, Nally SM, McMaster D, Catherwood MA, Trimble ER: Restoration of glutathione levels in vascular smooth muscle cells exposed to high glucose conditions. Free Radic Biol Med 31: 149–1155, 2001

    Article  Google Scholar 

  17. Catherwood MA, Powell LA, Anderson P, McMaster D, Sharpe PC, Trimble ER: Glucose-induced oxidative stress in mesangial cells. Kidney Int 61: 599–608, 2002

    Article  CAS  PubMed  Google Scholar 

  18. Winiarska K, Drozak J, Wegrzynowicz M, Jagielski AK, Bryla J: Relationship between gluconeogenesis and glutathione redox state in rabbit kidney-cortex tubules. Metabolism 52: 739–746, 2003

    Article  CAS  PubMed  Google Scholar 

  19. Stumvoll M, Meyer C, Mitrakou A, Nadkarni V, Gerich JE: Renal glucose production and utilization: New aspects in humans. Diabetologia 40: 749–757, 1997

    Article  CAS  PubMed  Google Scholar 

  20. Adrogue HJ: Glucose homeostasis and the kidney. Kidney Int 42: 1266–1282, 1992

    CAS  PubMed  Google Scholar 

  21. Usatenko MS: Hormonal regulation of phosphoenolpyruvate carboxykinase activity in liver and kidney of adult animals and formation of this enzyme in developing rabbit liver. Biochem Med 3: 298–310, 1970

    Article  CAS  PubMed  Google Scholar 

  22. Kiersztan A, Modzelewska A, Jarzyna R, Jagielska E, Bryla J: Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochem Pharmacol 63: 1371–1382, 2002

    Article  CAS  PubMed  Google Scholar 

  23. Jarzyna R, Kiersztan A, Lisowa O, Bryla J: The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action. Eur J Pharmacol 428: 381–388, 2001

    Article  CAS  PubMed  Google Scholar 

  24. Bryla J, Harris EJ, Plumb JA: The stimulatory effect of glucagon and dibutyryl cyclic AMP on ureogenesis and gluconeogenesis in relation to the mitochondrial ATP content. FEBS Lett 80: 443–448, 1977

    Article  CAS  PubMed  Google Scholar 

  25. Zaleski J, Zablocki K, Bryla J: Short-term effect of glucagon on gluconeogenesis and pyruvate kinase in rabbit hepatocytes. Int J Biochem 14: 733–739, 1982

    Article  CAS  PubMed  Google Scholar 

  26. Cheng FC, Jen JF, Tsai TH: Hydroxyl radical in living systems and its separation methods. J Chromatogr B Analyt Technol Biomed Life Sci 781: 481–496, 2002

    CAS  PubMed  Google Scholar 

  27. Bergmeyer HU (ed): Methods in Enzymatic Analysis. Verlag Chemie GmbH, Weinheim-Basel, 1983

    Google Scholar 

  28. Ridnour LA, Winters RA, Ercal N, Spitz DR: Measurement of glutathione, glutathione disulfide, and other thiols in mammalian cell and tissue homogenates using high-performance liquid chromatography separation of N-(1-pyrenyl)maleimide derivatives. Methods Enzymol 299: 258–267, 1999

    CAS  PubMed  Google Scholar 

  29. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976

    Article  CAS  PubMed  Google Scholar 

  30. Lietz T, Bryla J: Glycerol and lactate induce reciprocal changes in glucose formation and glutamine production in isolated rabbit kidney-cortex tubules incubated with aspartate. Arch Biochem Biophys 321: 501–509, 1995

    Article  CAS  PubMed  Google Scholar 

  31. Kosenko EA, Kaminsky YG: A comparison between effects of chronic ethanol consumption, ethanol withdrawal and fasting in ethanolfed rats on the free cytosolic NADP+/NADPH ratio and NADPH-regenerating enzyme activities in the liver. Int J Biochem 17: 895–902, 1985

    Article  CAS  PubMed  Google Scholar 

  32. Reiter RJ, Tan DX, Allegra M: Melatonin: Reducing molecular pathology and dysfunction due to free radicals and associated reactants. Neuroendocrinol Lett 23(suppl 1): 3–8, 2002

    CAS  PubMed  Google Scholar 

  33. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P Jr, Reed RL, Jones DP: Glutathione in human plasma: Decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med 24: 699–704, 1998

    Article  CAS  PubMed  Google Scholar 

  34. Zaltzberg H, Kanter Y, Aviram M, Levy Y: Increased plasma oxidizability and decreased erythrocyte and plasma antioxidative capacity in patients with NIDDM. Isr Med Assoc J 1: 228–231, 1999

    CAS  PubMed  Google Scholar 

  35. Lang CA, Mills BJ, Mastropaolo W, Liu MC: Blood glutathione decreases in chronic diseases. J Lab Clin Med 135: 402–405, 2000

    Article  CAS  PubMed  Google Scholar 

  36. Obrosova IG, Fathallah L, Liu E, Nourooz-Zadeh J: Early oxidative stress in the diabetic kidney: Effect of DL-alpha-lipoic acid. Free Radic Biol Med 34: 186–195, 2003

    Article  CAS  PubMed  Google Scholar 

  37. McCabe DR, Maher TJ, Acworth IN: Improved method for the estimation of hydroxyl free radical levels in vivo based on liquid chromatography with electrochemical detection. J Chromatogr B Biomed Sci Appl 69: 23–32, 1997

    Google Scholar 

  38. Jain SK, McVie R: Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients. Diabetes 48: 1850–1855, 1999

    CAS  PubMed  Google Scholar 

  39. Pennathur S, Wagner JD, Leeuwenburgh C, Litwak KN, Heinecke JW: A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J Clin Invest 107: 853–860, 2001

    CAS  PubMed  Google Scholar 

  40. Cameron NE, Tuck Z, McCabe L, Cotter MA: Effect of the hydroxyl radical scavenger, dimethylthiourea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes. Diabetologia 44: 1161–1169, 2001

    CAS  PubMed  Google Scholar 

  41. Hattori N, Schnell O, Bengel FM, Rihl J, Nekolla SG, Drzezga AE, Standl E, Schwaiger M: Deferoxamine improves coronary vascular responses to sympathetic stimulation in patients with type 1 diabetes mellitus. Eur J Nucl Med Mol Imaging 29: 891–898, 2002

    Article  CAS  PubMed  Google Scholar 

  42. Lebovitz HE: Diabetic ketoacidosis. Lancet 345: 767–772, 1995

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Z, Apse K, Pang J, Stanton RC: High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J Biol Chem 275: 40042–40047, 2000

    CAS  PubMed  Google Scholar 

  44. Atalay M, Laaksonen DE, Niskanen L, Uusitupa M, Hanninen O, Sen CK: Altered antioxidant enzyme defences in insulin-dependent diabetic men with increased resting and exercise-induced oxidative stress. Acta Physiol Scand 161: 195–201, 1997

    Article  CAS  PubMed  Google Scholar 

  45. Davis RL, Lavine CL, Arredondo MA, McMahon P, Tenner TE Jr: Differential indicators of diabetes-induced oxidative stress in New Zealand White rabbits: Role of dietary vitamin E supplementation. Int J Exp Diabetes Res 3: 185–192, 2002

    PubMed  Google Scholar 

  46. Obrosova IG, Fathallah L, Greene DA: Early changes in lipid peroxidation and antioxidative defense in diabetic rat retina: Effect of DL-alpha-lipoic acid. Eur J Pharmacol 398: 139–146, 2000

    Article  CAS  PubMed  Google Scholar 

  47. Ulusu NN, Sahilli M, Avci A, Canbolat O, Ozansoy G, Ari N, Bali M, Stefek M, Stolc S, Gajdosik A, Karasu C: Pentose phosphate pathway, glutathione-dependent enzymes and antioxidant defense during oxidative stress in diabetic rodent brain and peripheral organs: Effects of stobadine and vitamin E. Neurochem Res 28: 815–823, 2003

    Article  CAS  PubMed  Google Scholar 

  48. Kilanczyk E, Bryszewska M: The effect of melatonin on antioxidant enzymes in human diabetic skin fibroblasts. Cell Mol Biol Lett 8: 333–336, 2003

    CAS  PubMed  Google Scholar 

  49. Aksoy N, Vural H, Sabuncu T, Aksoy S: Effects of melatonin on oxidative—antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem Funct 21: 121–125, 2003

    Article  CAS  PubMed  Google Scholar 

  50. Vural H, Sabuncu T, Arslan SO, Aksoy N: Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. Pineal Res 31: 193–198, 2001

    CAS  Google Scholar 

  51. Ha H, Yu MR, Kim KH: Melatonin and taurine reduce early glomerulopathy in diabetic rats. Free Radic Biol Med 26: 944–950, 1999

    Article  CAS  PubMed  Google Scholar 

  52. Gorgun FM, Ozturk Z, Gumustas MK, Kokogu E: Melatonin administration affects plasma total sialic acid and lipid peroxidation levels in streptozotocin induced diabetic rats. J Toxicol Environ Health A 65: 695–700, 2002

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winiarska, K., Drozak, J., Wegrzynowicz, M. et al. Diabetes-induced changes in glucose synthesis, intracellular glutathione status and hydroxyl free radical generation in rabbit kidney-cortex tubules. Mol Cell Biochem 261, 91–98 (2004). https://doi.org/10.1023/B:MCBI.0000028742.83086.43

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000028742.83086.43

Navigation