Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Altered hypothalamic function in diet-induced obesity

Abstract

Energy homeostasis involves a complex network of hypothalamic and extra-hypothalamic neurons that transduce hormonal, nutrient and neuronal signals into responses that ultimately match caloric intake to energy expenditure and thereby promote stability of body fat stores. Growing evidence suggests that rather than reflecting a failure to regulate caloric intake, common forms of obesity involve fundamental changes to this homeostatic system that favor the defense of an elevated level of body adiposity. This article reviews emerging evidence that during high-fat feeding, obesity pathogenesis involves fundamental alteration of hypothalamic systems that regulate food intake and energy expenditure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kelly T, Yang W, Chen CS, Reynolds K, He J . Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008; 32: 1431–1437.

    Article  CAS  Google Scholar 

  2. Daniels SR . Complications of obesity in children and adolescents. Int J Obes (Lond) 2009; 33 (Suppl 1): S60–S65.

    Google Scholar 

  3. Tsiros MD, Olds T, Buckley JD, Grimshaw P, Brennan L, Walkley J et al. Health-related quality of life in obese children and adolescents. Int J Obes (Lond) 2009; 33: 387–400.

    CAS  Google Scholar 

  4. Anandacoomarasamy A, Caterson I, Sambrook P, Fransen M, March L . The impact of obesity on the musculoskeletal system. Int J Obes (Lond) 2008; 32: 211–222.

    CAS  Google Scholar 

  5. Haslam DW, James WP . Obesity. Lancet 2005; 366: 1197–1209.

    PubMed  Google Scholar 

  6. Ross R, Bradshaw AJ . The future of obesity reduction: beyond weight loss. Nat Rev Endocrinol 2009; 5: 319–325.

    PubMed  Google Scholar 

  7. Neovius M, Narbro K . Cost-effectiveness of pharmacological anti-obesity treatments: a systematic review. Int J Obes (Lond) 2008; 32: 1752–1763.

    CAS  Google Scholar 

  8. Hainer V, Toplak H, Mitrakou A . Treatment modalities of obesity: what fits whom? Diabetes Care 2008; 31 (Suppl 2): S269–S277.

    CAS  PubMed  Google Scholar 

  9. Tice JA, Karliner L, Walsh J, Petersen AJ, Feldman MD . Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures. Am J Med 2008; 121: 885–893.

    PubMed  Google Scholar 

  10. Grill HJ . Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity (Silver Spring) 2006; 14 (Suppl 5): 216S–221S.

    Google Scholar 

  11. Grill HJ, Hayes MR . The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Int J Obes (Lond) 2009; 33 (Suppl 1): S11–S15.

    CAS  Google Scholar 

  12. Brooks C . The hypothalamus and obesity. Med J Aust 1948; 1: 327–331.

    CAS  PubMed  Google Scholar 

  13. Kennedy GC . Experimental hypothalamic obesity. Proc R Soc Med 1951; 44: 899–902.

    CAS  PubMed  Google Scholar 

  14. Sunderman FW, Haymaker W . Hypothermia and elevated serum magnesium in a patient with facial hemangioma extending into the hypothalamus. Am J Med Sci 1947; 213: 562–571.

    CAS  PubMed  Google Scholar 

  15. Katsuki S, Hirata Y, Horino M, Ito M, Ishimoto M, Makino N et al. Obesity and hyperglycemia induced in mice by goldthioglucose. Diabetes 1962; 11: 209–215.

    CAS  PubMed  Google Scholar 

  16. Anand BK, Dua S, Shoenberg K . Hypothalamic control of food intake in cats and monkeys. J Physiol 1955; 127: 143–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tanaka K, Shimada M, Nakao K, Kusunoki T . Hypothalamic lesion induced by injection of monosodium glutamate in suckling period and subsequent development of obesity. Exp Neurol 1978; 62: 191–199.

    CAS  PubMed  Google Scholar 

  18. Kennedy GC . The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci 1953; 140: 578–596.

    CAS  PubMed  Google Scholar 

  19. Mayer J . The glucostatic theory of regulation of food intake and the problem of obesity. Bull New Engl Med Cent 1952; 14: 43–49.

    CAS  PubMed  Google Scholar 

  20. Hervey GR . The effects of lesions in the hypothalamus in parabiotic rats. J Physiol 1959; 145: 336–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Coleman DL . Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 1973; 9: 294–298.

    CAS  PubMed  Google Scholar 

  22. Margolis RU, Altszuler N . Insulin in the cerebrospinal fluid. Nature 1967; 215: 1375–1376.

    CAS  PubMed  Google Scholar 

  23. Havrankova J, Roth J, Brownstein M . Insulin receptors are widely distributed in the central nervous system of the rat. Nature 1978; 272: 827–829.

    CAS  PubMed  Google Scholar 

  24. Hatfield JS, Millard WJ, Smith CJ . Short-term influence of intra-ventromedial hypothalamic administration of insulin on feeding in normal and diabetic rats. Pharmacol Biochem Behav 1974; 2: 223–226.

    CAS  PubMed  Google Scholar 

  25. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000; 289: 2122–2125.

    CAS  PubMed  Google Scholar 

  26. Shibata S, Liou SY, Ueki S, Oomura Y . Inhibitory action of insulin on suprachiasmatic nucleus neurons in rat hypothalamic slice preparations. Physiol Behav 1986; 36: 79–81.

    CAS  PubMed  Google Scholar 

  27. Baskin DG, Brewitt B, Davidson DA, Corp E, Paquette T, Figlewicz DP et al. Quantitative autoradiographic evidence for insulin receptors in the choroid plexus of the rat brain. Diabetes 1986; 35: 246–249.

    CAS  PubMed  Google Scholar 

  28. Stein LJ, Dorsa DM, Baskin DG, Figlewicz DP, Ikeda H, Frankmann SP et al. Immunoreactive insulin levels are elevated in the cerebrospinal fluid of genetically obese Zucker rats. Endocrinology 1983; 113: 2299–2301.

    CAS  PubMed  Google Scholar 

  29. Baskin DG, Woods SC, West DB, van Houten M, Posner BI, Dorsa DM et al. Immunocytochemical detection of insulin in rat hypothalamus and its possible uptake from cerebrospinal fluid. Endocrinology 1983; 113: 1818–1825.

    CAS  PubMed  Google Scholar 

  30. Schwartz MW, Sipols A, Kahn SE, Lattemann DF, Taborsky Jr GJ, Bergman RN et al. Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid. Am J Physiol 1990; 259 (3 part 1): E378–E383.

    CAS  PubMed  Google Scholar 

  31. Oomura Y, Kita H . Insulin acting as a modulator of feeding through the hypothalamus. Diabetologia 1981; 20 (Suppl): 290–298.

    CAS  PubMed  Google Scholar 

  32. Obici S, Feng Z, Arduini A, Conti R, Rossetti L . Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med 2003; 9: 756–761.

    CAS  PubMed  Google Scholar 

  33. Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L . Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 2005; 309: 943–947.

    CAS  PubMed  Google Scholar 

  34. Sakaguchi T, Takahashi M, Bray GA . Diurnal changes in sympathetic activity. Relation to food intake and to insulin injected into the ventromedial or suprachiasmatic nucleus. J Clin Invest 1988; 82: 282–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanchez-Alavez M, Tabarean IV, Osborn O, Mitsukawa K, Schaefer J, Dubins J et al. Insulin causes hyperthermia by direct inhibition of warm-sensitive neurons. Diabetes 2010; 59: 43–50.

    CAS  PubMed  Google Scholar 

  36. Lotter EC, Woods SC . Injections of insulin and changes of body weight. Physiol Behav 1977; 18: 293–297.

    CAS  PubMed  Google Scholar 

  37. Brandes JS . Insulin induced overeating in the rat. Physiol Behav 1977; 18: 1095–1102.

    CAS  PubMed  Google Scholar 

  38. Jessen L, Clegg DJ, Bouman SD . Evaluation of the lack of anorectic effect of intracerebroventricular insulin in rats. Am J Physiol Regul Integr Comp Physiol 2010; 298: R43–R50.

    CAS  PubMed  Google Scholar 

  39. Carvalheira JB, Siloto RM, Ignacchitti I, Brenelli SL, Carvalho CR, Leite A et al. Insulin modulates leptin-induced STAT3 activation in rat hypothalamus. FEBS Lett 2001; 500: 119–124.

    CAS  PubMed  Google Scholar 

  40. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  PubMed  Google Scholar 

  41. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83: 1263–1271.

    CAS  PubMed  Google Scholar 

  42. Chua Jr SC, White DW, Wu-Peng XS, Liu SM, Okada N, Kershaw EE et al. Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes 1996; 45: 1141–1143.

    CAS  PubMed  Google Scholar 

  43. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002; 110: 1093–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Villanueva EC, Myers Jr MG . Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes (Lond) 2008; 32 (Suppl 7): S8–12.

    CAS  Google Scholar 

  45. Li C, Friedman JM . Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Proc Natl Acad Sci USA 1999; 96: 9677–9682.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gong Y, Ishida-Takahashi R, Villanueva EC, Fingar DC, Munzberg H, Myers Jr MG . The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J Biol Chem 2007; 282: 31019–31027.

    CAS  PubMed  Google Scholar 

  47. Banks AS, Davis SM, Bates SH, Myers Jr MG . Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 2000; 275: 14563–14572.

    CAS  PubMed  Google Scholar 

  48. Gao S, Kinzig KP, Aja S, Scott KA, Keung W, Kelly S et al. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc Natl Acad Sci USA 2007; 104: 17358–17363.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Girasol A, Albuquerque GG, Mansour E, Araujo EP, Degasperi G, Denis RG et al. Fyn mediates leptin actions in the thymus of rodents. PLoS One 2009; 4: e7707.

    PubMed  PubMed Central  Google Scholar 

  50. Ropelle ER, Pauli JR, Fernandes MF, Rocco SA, Marin RM, Morari J et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 2008; 57: 594–605.

    CAS  PubMed  Google Scholar 

  51. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC et al. Hypothalamic mTOR signaling regulates food intake. Science 2006; 312: 927–930.

    CAS  PubMed  Google Scholar 

  52. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569–574.

    CAS  PubMed  Google Scholar 

  53. Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers Jr MG et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 2003; 52: 227–231.

    CAS  PubMed  Google Scholar 

  54. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW . Central nervous system control of food intake and body weight. Nature 2006; 443: 289–295.

    CAS  PubMed  Google Scholar 

  55. Moran TH . Gut peptides in the control of food intake. Int J Obes (Lond) 2009; 33 (Suppl 1): S7–10.

    CAS  Google Scholar 

  56. Badman MK, Flier JS . The gut and energy balance: visceral allies in the obesity wars. Science 2005; 307: 1909–1914.

    CAS  PubMed  Google Scholar 

  57. Woods SC, Seeley RJ, Cota D . Regulation of food intake through hypothalamic signaling networks involving mTOR. Annu Rev Nutr 2008; 28: 295–311.

    CAS  PubMed  Google Scholar 

  58. Coope A, Milanski M, Araujo EP, Tambascia M, Saad MJ, Geloneze B et al. AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett 2008; 582: 1471–1476.

    CAS  PubMed  Google Scholar 

  59. Niswender KD, Baskin DG, Schwartz MW . Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends Endocrinol Metab 2004; 15: 362–369.

    CAS  PubMed  Google Scholar 

  60. Niswender KD, Schwartz MW . Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol 2003; 24: 1–10.

    CAS  PubMed  Google Scholar 

  61. Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab 2010; 11: 286–297.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Williams KW, Margatho LO, Lee CE, Choi M, Lee S, Scott MM et al. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J Neurosci 2010; 30: 2472–2479.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pijl H, Toornvliet AC, Meinders AE . Serum leptin in normal-weight and obese humans. N Engl J Med 1996; 334: 1544.

    CAS  PubMed  Google Scholar 

  64. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995; 1: 1155–1161.

    CAS  PubMed  Google Scholar 

  65. Bluher S, Mantzoros CS . Leptin in humans: lessons from translational research. Am J Clin Nutr 2009; 89: 991S–997S.

    PubMed  PubMed Central  Google Scholar 

  66. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte Jr D . Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 1996; 2: 589–593.

    CAS  PubMed  Google Scholar 

  67. Torsoni MA, Carvalheira JB, Pereira-Da-Silva M, de Carvalho-Filho MA, Saad MJ, Velloso LA . Molecular and functional resistance to insulin in hypothalamus of rats exposed to cold. Am J Physiol Endocrinol Metab 2003; 285: E216–E223.

    CAS  PubMed  Google Scholar 

  68. Schwartz MW, Baskin DG, Bukowski TR, Kuijper JL, Foster D, Lasser G et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 1996; 45: 531–535.

    CAS  PubMed  Google Scholar 

  69. Myers Jr MG, Leibel RL, Seeley RJ, Schwartz MW . Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 2010; 21: 643–651.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS . Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1995; 1: 1311–1314.

    CAS  PubMed  Google Scholar 

  71. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM . Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci USA 1997; 94: 8878–8883.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Romanatto T, Roman EA, Arruda AP, Denis RG, Solon C, Milanski M et al. Deletion of tumor necrosis factor-alpha receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J Biol Chem 2009; 284: 36213–36222.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 2004; 10: 739–743.

    CAS  PubMed  Google Scholar 

  74. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005; 146: 4192–4199.

    CAS  PubMed  Google Scholar 

  75. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 2009; 29: 359–370.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Moraes JC, Coope A, Morari J, Cintra DE, Roman EA, Pauli JR et al. High-fat diet induces apoptosis of hypothalamic neurons. PLoS One 2009; 4: e5045.

    PubMed  PubMed Central  Google Scholar 

  77. Flores MB, Fernandes MF, Ropelle ER, Faria MC, Ueno M, Velloso LA et al. Exercise improves insulin and leptin sensitivity in hypothalamus of Wistar rats. Diabetes 2006; 55: 2554–2561.

    CAS  PubMed  Google Scholar 

  78. Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol 2010; 8: pii:e1000465.

  79. Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P et al. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 2001; 108: 1113–1121.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, Shulman GI et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci USA 2004; 101: 4661–4666.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Prada PO, Zecchin HG, Gasparetti AL, Torsoni MA, Ueno M, Hirata AE et al. Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology 2005; 146: 1576–1587.

    CAS  PubMed  Google Scholar 

  82. Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS . The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 1999; 274: 30059–30065.

    CAS  PubMed  Google Scholar 

  83. Howard JK, Flier JS . Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 2006; 17: 365–371.

    CAS  PubMed  Google Scholar 

  84. Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS . Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 2004; 10: 734–738.

    CAS  PubMed  Google Scholar 

  85. Bjornholm M, Munzberg H, Leshan RL, Villanueva EC, Bates SH, Louis GW et al. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest 2007; 117: 1354–1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell 2002; 2: 489–495.

    CAS  PubMed  Google Scholar 

  87. Morrison CD, White CL, Wang Z, Lee SY, Lawrence DS, Cefalu WT et al. Increased hypothalamic protein tyrosine phosphatase 1B contributes to leptin resistance with age. Endocrinology 2007; 148: 433–440.

    CAS  PubMed  Google Scholar 

  88. Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ et al. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell 2002; 2: 497–503.

    CAS  PubMed  Google Scholar 

  89. Picardi PK, Calegari VC, Prada Pde O, Moraes JC, Araujo E, Marcondes MC et al. Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats. Endocrinology 2008; 149: 3870–3880.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 2006; 12: 917–924.

    CAS  PubMed  Google Scholar 

  91. Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W et al. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest 2010; 120: 720–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Martin TL, Alquier T, Asakura K, Furukawa N, Preitner F, Kahn BB . Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J Biol Chem 2006; 281: 18933–18941.

    CAS  PubMed  Google Scholar 

  93. Xue B, Pulinilkunnil T, Murano I, Bence KK, He H, Minokoshi Y et al. Neuronal protein tyrosine phosphatase 1B deficiency results in inhibition of hypothalamic AMPK and isoform-specific activation of AMPK in peripheral tissues. Mol Cell Biol 2009; 29: 4563–4573.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Davis RJ . Signal transduction by the JNK group of MAP kinases. Cell 2000; 103: 239–252.

    CAS  PubMed  Google Scholar 

  95. Unger EK, Piper ML, Olofsson LE, Xu AW . Functional role of c-Jun-N-terminal kinase in feeding regulation. Endocrinology 2010; 151: 671–682.

    CAS  PubMed  Google Scholar 

  96. Israel A . The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2010; 2: a000158.

    PubMed  PubMed Central  Google Scholar 

  97. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D . Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008; 135: 61–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009; 296: E1003–E1012.

    CAS  PubMed  Google Scholar 

  99. Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 2009; 119: 2577–2589.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hotamisligil GS . Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010; 140: 900–917.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Romanatto T, Cesquini M, Amaral ME, Roman EA, Moraes JC, Torsoni MA et al. TNF-alpha acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient--effects on leptin and insulin signaling pathways. Peptides 2007; 28: 1050–1058.

    CAS  PubMed  Google Scholar 

  102. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 2003; 100: 8514–8519.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J, Okamura T et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 2009; 10: 249–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. van den Pol AN . Weighing the role of hypothalamic feeding neurotransmitters. Neuron 2003; 40: 1059–1061.

    CAS  PubMed  Google Scholar 

  105. Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 2006; 49: 191–203.

    CAS  PubMed  Google Scholar 

  106. Sakaguchi T, Bray GA . Intrahypothalamic injection of insulin decreases firing rate of sympathetic nerves. Proc Natl Acad Sci USA 1987; 84: 2012–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Levin BE, Brown KL, Dunn-Meynell AA . Differential effects of diet and obesity on high and low affinity sulfonylurea binding sites in the rat brain. Brain Res 1996; 739: 293–300.

    CAS  PubMed  Google Scholar 

  108. Spanswick D, Smith MA, Mirshamsi S, Routh VH, Ashford ML . Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci 2000; 3: 757–758.

    CAS  PubMed  Google Scholar 

  109. Plum L, Ma X, Hampel B, Balthasar N, Coppari R, Munzberg H et al. Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J Clin Invest 2006; 116: 1886–1901.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pierce AA, Xu AW . De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci 2010; 30: 723–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kokoeva MV, Yin H, Flier JS . Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 2005; 310: 679–683.

    CAS  PubMed  Google Scholar 

  112. Coleman CG, Wang G, Park L, Anrather J, Delagrammatikas GJ, Chan J et al. Chronic intermittent hypoxia induces NMDA receptor-dependent plasticity and suppresses nitric oxide signaling in the mouse hypothalamic paraventricular nucleus. J Neurosci 2010; 30: 12103–12112.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chun SK, Jo YH . Loss of leptin receptors on hypothalamic POMC neurons alters synaptic inhibition. J Neurophysiol 2010; 104: 2321–2328.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Horvath TL . Synaptic plasticity in energy balance regulation. Obesity (Silver Spring) 2006; 14 (Suppl 5): 228S–233S.

    CAS  Google Scholar 

  115. Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 2004; 304: 110–115.

    CAS  PubMed  Google Scholar 

  116. Fenoglio KA, Chen Y, Baram TZ . Neuroplasticity of the hypothalamic-pituitary-adrenal axis early in life requires recurrent recruitment of stress-regulating brain regions. J Neurosci 2006; 26: 2434–2442.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Velloso.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velloso, L., Schwartz, M. Altered hypothalamic function in diet-induced obesity. Int J Obes 35, 1455–1465 (2011). https://doi.org/10.1038/ijo.2011.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.56

Keywords

This article is cited by

Search

Quick links