Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c

Abstract

Insulin stimulates glucose uptake in muscle and adipocytes by signalling the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface1,2. The translocation of GLUT4 may involve signalling pathways that are both independent of and dependent on phosphatidylinositol-3-OH kinase (PI(3)K)3,4,5. This translocation also requires the actin cytoskeleton6,7,8, and the rapid movement of GLUT4 along linear tracks may be mediated by molecular motors9. Here we report that the unconventional myosin Myo1c is present in GLUT4-containing vesicles purified from 3T3-L1 adipocytes. Myo1c, which contains a motor domain, three IQ motifs and a carboxy-terminal cargo domain, is highly expressed in primary and cultured adipocytes. Insulin enhances the localization of Myo1c with GLUT4 in cortical tubulovesicular structures associated with actin filaments, and this colocalization is insensitive to wortmannin. Insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane is augmented by the expression of wild-type Myo1c and inhibited by a dominant-negative cargo domain of Myo1c. A decrease in the expression of endogenous Myo1c mediated by small interfering RNAs inhibits insulin-stimulated uptake of 2-deoxyglucose. Thus, myosin Myo1c functions in a PI(3)K-independent insulin signalling pathway that controls the movement of intracellular GLUT4-containing vesicles to the plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Insulin augments cortical Myoic localization in 3T3-L1 adipocytes.
Figure 2: Whole-mount electron microscopy of the peripheral region of an insulin-stimulated 3T3-L1 adipocyte.
Figure 3: Dominant-negative cargo domain of Myo1c but not Myo1b inhibits insulin-stimulated Myc–GLUT4–GFP translocation to the plasma membrane.
Figure 4: Inhibition of insulin-stimulated 2-deoxyglucose uptake in differentiated 3T3-L1 adipocytes by siRNA-mediated degradation of Myo1c mRNA.
Figure 5: Expression of Myo1c–YFP in differentiated 3T3-L1 adipocytes potentiates insulin-stimulated Myc–GLUT4–CFP translocation.

Similar content being viewed by others

References

  1. Czech, M. P. & Corvera, S. Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 274, 1865–1868 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Baumann, C. A. et al. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407, 202–207 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Chiang, S. H. et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410, 944–948 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Czech, M. P. Lipid rafts and insulin action. Nature 407, 147–148 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Omata, W., Shibata, H., Li, L., Takata, K. & Kojima, I. Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes. Biochem. J. 346, 321–328 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Q., Bilan, P. J., Tsakiridis, T., Hinek, A. & Klip, A. Actin filaments participate in the relocalization of phosphatidylinositol 3-kinase to glucose transporter-containing compartments and in the stimulation of glucose uptake in 3T3-L1 adipocytes. Biochem. J. 331, 917–928 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, Z. Y., Chawla, A., Bose, A., Way, M. & Czech, M. P. A phosphatidylinositol 3-kinase-independent insulin signaling pathway to N-WASP/Arp2/3/F-actin required for GLUT4 glucose transporter recycling. J. Biol. Chem. 277, 509–515 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. Patki, V. et al. Insulin action on GLUT4 traffic visualized in single 3T3-L1 adipocytes by using ultra-fast microscopy. Mol. Biol. Cell 12, 129–141 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guilherme, A. et al. Perinuclear localization and insulin responsiveness of GLUT4 requires cytoskeletal integrity in 3T3-L1 adipocytes. J. Biol. Chem. 275, 38151–38159 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Lin, B. Z., Pilch, P. F. & Kandror, K. V. Sortilin is a major protein component of Glut4-containing vesicles. J. Biol. Chem. 272, 24145–24147 (1997)

    Article  CAS  PubMed  Google Scholar 

  12. Laurie, S. M., Cain, C. C., Lienhard, G. E. & Castle, J. D. The glucose transporter Glut4 and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J. Biol. Chem. 268, 19110–19117 (1993)

    CAS  PubMed  Google Scholar 

  13. Kandror, K. V. & Pilch, P. F. gp160, a tissue-specific marker for insulin-activated glucose transport. Proc. Natl Acad. Sci. USA 91, 8017–8021 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cain, C. C., Trimble, W. S. & Lienhard, G. E. Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J. Biol. Chem. 267, 11681–11684 (1992)

    CAS  PubMed  Google Scholar 

  15. Gillespie, P. G. et al. Myosin-I nomenclature. J. Cell. Biol. 155, 703–704 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reizes, O., Barylko, B., Li, C., Sudhof, T. C. & Albanesi, J. P. Domain structure of a mammalian myosin Iβ. Proc. Natl Acad. Sci. USA 91, 6349–6353 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barylko, B., Wagner, M. C., Reizes, O. & Albanesi, J. P. Purification and characterization of a mammalian myosin I. Proc. Natl Acad. Sci. USA 89, 490–494 (1992)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, X., Jung, G. & Hammer, J. A. Functions of unconventional myosins. Curr. Opin. Cell Biol. 12, 42–51 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Neuhaus, E. M. & Soldati, T. A myosin 1 is involved in membrane recycling from early endosomes. J. Cell Biol. 150, 1013–1026 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Montes de Oca, G., Lezama, R. A., Mondragon, R., Castillo, A. M. & Meza, I. Myosin I interactions with actin filaments and trans-Golgi derived vesicles in MDMK cell monolayers. Arch. Med. Res. 28, 321–328 (1997)

    CAS  PubMed  Google Scholar 

  21. Holt, J. R. et al. A chemical–genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–381 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Raposo, G. et al. Association of myosin Iα with endosomes and lysosomes in mammalian cells. Mol. Biol. Cell. 10, 1477–1494 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruppert, C. et al. Localization of the rat myosin I molecules myr 1 and myr 2 and in vivo targeting of their tail domains. J. Cell. Sci. 108, 3775–3786 (1995)

    CAS  PubMed  Google Scholar 

  24. Okada, T., Kawano, Y., Sakakibara, T., Hazeki, O. & Ui, M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269, 3568–3573 (1994)

    CAS  PubMed  Google Scholar 

  25. Emoto, M., Langille, S. E. & Czech, M. P. A role for kinesin in insulin-stimulated GLUT4 glucose transporter translocation in 3T3-L1 adipocytes. J. Biol. Chem. 276, 10677–10682 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Wu, X., Bowers, B., Wei, Q., Kocher, B. & Hammer, J. A. Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. J. Cell Sci. 110, 847–859 (1997)

    CAS  PubMed  Google Scholar 

  27. Wu, X., Bowers, B., Rao, K., Wei, Q. & Hammer, J. A. Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo. J. Cell Biol. 143, 1899–1918 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bose, A. et al. Gα11 signaling through ARF6 regulates F-actin mobilization and GLUT4 glucose transporter translocation to the plasma membrane. Mol. Cell. Biol. 21, 5262–5275 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Jiang, Z. Y. et al. Insulin signalling through Akt/PKB analyzed by siRNA-mediated gene silencing. Proc. Natl. Acad. Sci. (submitted)

Download references

Acknowledgements

We thank M. Bahler for the Tu49 antiserum; E. Coudrier for the Myo1b construct; P. Furcinitti for help with digital microscopy; J. Lescyk and G. Witman, G. Hendricks and the Core Proteomics Facility and the Core Electron Microscopy Facility of the NIH Diabetes and Endocrinology Research Center at the University of Massachusetts Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Czech.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bose, A., Guilherme, A., Robida, S. et al. Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature 420, 821–824 (2002). https://doi.org/10.1038/nature01246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01246

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing