Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2

Abstract

Obesity is a major predisposing factor for the development of several chronic diseases including non-insulin dependent diabetes mellitus (NIDDM) and coronary heart disease (CHD). Leptin is a serum protein which is secreted by adipocytes1–4 and thought to play a role in the regulation of body fat5–8. Leptin levels in humans have been found to be highly correlated with an individual's total adiposity8,9. We performed a genome-wide scan and conducted multipoint linkage analysis using a general pedigree-based variance component approach to identify genes with measurable effects on quantitative variation in leptin levels in Mexican Americans. A microsatellite polymorphism, D2S1788, mapped to chromosome 2p21 (approximately 74 cM from the tip of the short arm) and showed strong evidence of linkage with serum leptin levels with a lod score of 4.95 (P = 9 × 10−7). This locus accounted for 47% of the variation in serum leptin levels, with a residual additive genetic component contributing an additional 24%. This region contains several potential candidate genes for obesity, including glucokinase regulatory protein (GCKR) and pro-opiomelanocortin (POMC). Our results show strong evidence of linkage of this region of chromosome 2 with serum leptin levels and indicate that this region could contain an important human obesity gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hamilton, B.S. Paglia, D. Kwan, A.Y.M. & Deitel, M. Increased obese mRNA expression in omental fat cells from massively obese humans. Nature Med. 9, 953–956 (1995).

    Article  Google Scholar 

  2. Lönnqvist, F. Arner, P. Nordfors, L. & Schalling, M. Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nature Med. 1, 950–953 (1995).

    Article  PubMed  Google Scholar 

  3. Masuzaki, H. et al. Human obese gene expression: adipocyte-specific expression and regional differences in the adipose tissue. Diabetes 44, 855–858 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Klein, S. Coppack, W. Mohamed-Ali, V. & Landt, M. Adipose tissue leptin production and plasma leptin kinetics in humans. Diabetes 45, 984–987 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Campfield, L.A. Smith, F.J. Guisez, Y. Devos, R. & Burn, P. Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Halaas, J.L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Pelleymounter, M.A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Maffei, M. et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Med. 1, 1155–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Considine, R.V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New Eng. J. Med. 334, 292–325 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Frisancho, A.R. Anthropometric Standards for the Assessment of Growth and Nutritional Status. (University of Michigan Press, Ann Arbor, 1990).

  11. Hazuda, H.P. Mitchell, B.D. Haffner, S.M. & Stern, M.P. Obesity in Mexican American subgroups: findings from the San Antonio Heart study. Am. J. Clin. Nutr. 53, 1529S–1534s (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Comuzzie, A.G. et al. Major gene with sex-specific effects influences fat mass in Mexican Americans. Genet. Epidemiol. 12, 475–488 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Hasstedt, S.J. Ramirez, M.E. Kuida, H. & Williams, R.R. Recessive inheritance of a relative fat pattern. Am. J. Hum. Genet. 45, 917–925 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Price, R.A. Ness, R. & Laskarzewski, P. Common major gene inheritance of extreme overweight. Hum. Biol. 62, 747–765 (1990).

    CAS  PubMed  Google Scholar 

  15. Rice, T. Borecki, I.B. Bouchard, C. & Rao, D.C. Segregation analysis of fat mass and other body composition measures derived from underwater weighing. Am. J. Hum. Genet. 52, 967–973 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Clement, K. et al. Indication for linkage of the human OB gene region with extreme obesity. Diabetes 45, 687–690 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Reed, D.R. et al. Extreme obesity may be linked to markers flanking the human OB gene. Diabetes 45, 691–694 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Duggirala, R. et al. Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7. Am. J. Hum. Genet. 59, 694–703 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Bray, G.A. & York, D.A. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol. Rev. 59, 719–809 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Hautanen, A. & Adlercreutz, H. Altered adrenocorticotropin and cortisol secretion in abdominal obesity: implications for the insulin resistance syndrome. J. Intern.Med. 234, 461–469 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. De Vos, P. Saladin, R. Auwerx, J. & Staels, B. Induction of ob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake. J. Biol. Chem. 270, 15958–15961 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Murakami, T. Iida, M. & Shima, K. Dexamethasone regulates obese expression in isolated rat adipocytes. Biochem. Biophys. Res. Comm. 214, 1260–1267 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Warner, J.P. Leek, J.P. Intody, S. Markham, A.F. & Bonthron, D.T. Human glucokinase regulatory protein (GCKR): cDNA and genomic cloning, complete primary structure, and chromosomal localization. Mammalian Genome 6, 532–536 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Clemént, K. et al. Genetic variation in the β3-adrenergic receptor and increased capacity to gain weight in patients with morbid obesity. JAMA. 333, 352–354 (1995).

    Google Scholar 

  27. Bottini, E. et al. Enzyme polymorphism and clinical variability of diseases: study of acid phosphatase locus 1 (ACP1) in obese subjects. Hum Biol. 62, 403–411 (1990).

    CAS  PubMed  Google Scholar 

  28. Pouliot, M.-C. et al. ApoB-100 gene EcoRI polymorphism: Relations to plasma lipoprotein changes associated with abdominal visceral obesity. Arterioscler. Thromb. 14, 527–533 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Rajput-Williams, J. et al. Variation of apolipoprotein-B gene is associated with obesity, high blood cholesterol levels, and increased risk of coronary heart disease. Lancet 2, 1442–1445 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Saha, N. Tay, J.S.H. Heng, C.K. & Humphries, S.E. DNA polymorphisms of the apolipoprotein B gene are associated with obesity and serum lipids in healthy Indians in Singapore. Clin. Genet. 44, 113–120 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Mahaney, M.C. et al. Plasma HDL cholesterol, triglycerides, and adiposity: A quantitative genetic test of the conjoint trait hypothesis in the San Antonio family heart study. Circulation 92, 3240–3248 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Mitchell, B.D. et al. Genetic analysis of the IRS: Pleiotropic effects of genes influencing insulin levels on lipoprotein and obesity measures. Arterioscler. Thromb. Vase. Biol. 16, 281–288 (1996).

    Article  CAS  Google Scholar 

  33. Mitchell, B.D. et al. A comparison of three methods for assessing Amerindian admixture in Mexican Americans. Ethnicity Dis. 3, 22–31 (1993).

    CAS  Google Scholar 

  34. Ma, Z. et al. Analysis of human plasma leptin by radioimmunoassay. Clin. Chem. J. 42, 942–946 (1996).

    CAS  Google Scholar 

  35. Amos, C.I. Robust variance-components approach for assessing genetic linkage in pedigrees. Am. J. Hum. Genet. 54, 535–543 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hopper, J.L. & Mathews, J.D. Extensions to multivariate normal models for pedigree analysis. Ann. Hum. Genet. 46, 373–383 (1982).

    Article  CAS  PubMed  Google Scholar 

  37. Blangero, J. & Almasy, L.A. SOLAR: Sequential Oligogenic Linkage Analysis Routines. Population Genetics Laboratory Technical Report No. 6, Southwest Foundation for Biomedical Research, San Antonio, Texas (1996).

  38. Lange, K. Weeks, D. & Boehnke, M. Programs for pedigree analysis: Mendel, Fisher, and dGene. Genet. Epidemiol. 5, 471–472 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Davis, S. Schoeder, M. Goldin, L.R. & Weeks, D.E. Nonparametric simulation-based statistics for detecting linkage in general pedigrees. Am. J. Hum. Genet. 58, 867–880 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fulker, D.W. Cherny, S.S. & Cardon, L.R. Multipoint interval mapping of quantitative trait loci, using sib pairs. Am. J. Hum. Genet. 56, 1224–1233 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Green, P. Falls, K. & Crooks, S. Documentation for CRI-MAP. Version 2.4. Department of Genetics, School of Medicine, Washington University, St. Louis (1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony G. Comuzzie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comuzzie, A., Hixson, J., Almasy, L. et al. A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet 15, 273–276 (1997). https://doi.org/10.1038/ng0397-273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0397-273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing